This paper describes the development and assessment of a computer code for three-dimensional compressible turbulent flows in modern gas turbine components. The code is based on a high-order upwinding relaxation scheme with fully conservative control volume. A three-dimensional Reynolds-averaged Navier-Stokes equation is solved with a two-equation turbulence model that has a low Reynolds number modification near the solid wall.

The code is applied to the study of compressible flow inside turbine blade rows of modern gas turbines. Measured data and calculations are carefully compared for the production and convection of aerodynamic loss to evaluate the code as an advanced design technique. The predicted aerodynamic performance is further compared with predictions based on current design techniques.

This content is only available via PDF.