An efficient oil film damper known as porous squeeze film damper (PSFD) was developed for more effective and reliable vibration control of high speed rotors based on the conventional squeeze film damper (SFD). The outer race of the PSFD is made of permeable sintered porous metal materials. The permeability allows some of the oil to permeate into and seep out the porous matix, with remarkebly improvement of the squeeze film damping properties. The characteristics of PSFD oil film stiffness and damping coefficients and permeability, also, the steady state unbalance response of a simple rigid rotor and flexible Jeffcott’s rotor supported on PSFD and SFD are investigated. A typical experiment is presented. Investigations show that the nonlinear vibration characteristis of the unpressurized SFD system such as bistable jump phenomena and “lockup” at rotor pin–pin critical speeds could be avoided and virtually disappear under much greater unbalance level with properly designed PSFD system. PSFD has the potential advantages to operate effectively under relative large unbalance conditions.

This content is only available via PDF.