This paper presents a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow. Numerical simulations, measurements in a low speed compressor, and measurements in a wind tunnel designed to simulate a compressor clearance flow are used to assess the approach. The analysis thus developed allows predictions of endwall blockage associated with variations in tip clearance, blade stagger angle, inlet boundary layer thickness, loading level, loading profile, solidity and clearance jet total pressure. The estimates provided by this simplified method capture the trends in blockage with changes in design parameters to within 10%. More importantly, however, the method provides physical insight into, and thus guidance for control of, the flow features and phenomena responsible for compressor endwall blockage generation.

This content is only available via PDF.