Numerical simulation of gas turbine combustors requires resolving a broad spectrum of length and time scales for accurate flow field and emission predictions. Reynold’s Averaged Navier Stokes (RANS) approach can generate solutions in few hours; however, it fails to produce accurate predictions for turbulent reacting flow field seen in general combustors. On the other hand, the Large Eddy Simulation (LES) approach can overcome this challenge, but it requires orders of magnitude higher computational cost. This limits designers to use the LES approach in combustor development cycles and prohibits them from using the same in numerical optimization. The current work tries to build an alternate approach using a data-driven method to generate fast and consistent results. In this work, deep learning (DL) dense neural network framework is used to improve the RANS solution accuracy using LES data as truth data. A supervised regression learning multilayer perceptron (MLP) neural network engine is developed. The machine learning (ML) engine developed in the present study can compute data with LES accuracy in 95% lesser computational time than performing LES simulations. The output of the ML engine shows good agreement with the trend of LES, which is entirely different from RANS, and to a reasonable extent, captures magnitudes of actual flow variables. However, it is recommended that the ML engine be trained using broad design space and physical laws along with a purely data-driven approach for better generalization.

This content is only available via PDF.
You do not currently have access to this content.