Thin and very thin (less than 10 μm) liquid films driven by a forced gas/vapor flow (stratified or annular flows), i.e. shear-driven liquid films in a narrow channel is a promising candidate for the thermal management of advanced semiconductor devices in earth and space applications. Development of such technology requires significant advances in fundamental research, since the stability of joint flow of locally heated liquid film and gas is a rather complex problem. The paper focuses on the recent progress that has been achieved by the authors through conducting experiments. Experiments with water in flat channels with height of H = 1.2–2.0 mm (mini-scale) show that a liquid film driven by the action of a gas flow is stable in a wide range of liquid/gas flow rates. Map of isothermal flow regime was plotted and the length of smooth region was measured. Even for sufficiently high gas flow rates an important thermocapillary effect on film dynamics occurs. Scenario of film rupture differs widely for different flow regimes. It is found that the critical heat flux for a shear driven film can be 10 times higher than that for a falling liquid film, and exceeds 400 W/cm2 in experiments with water for moderate liquid flow rates. This fact makes use of shear-driven liquid films promising in high heat flux chip cooling applications.

This content is only available via PDF.
You do not currently have access to this content.