This study used RETRAN program to analyze the turbine trip and load rejection transients of Taiwan Power Company Lungmen Nuclear Power Plant’s startup test at 100% power and 100% core flow operating condition. This model includes thermal flow control volumes and junctions, control systems, thermal hydraulic models, safety systems, and 1D kinetics model. In Lungmen RETRAN model, four steam lines are simulated as one line. There are four simulated control systems: pressure control system, water level control system, feedwater control system, and speed control system for reactor internal pumps. The turbine trip event, at above 40% power, triggers the fast open of the bypass valves. Upon the turbine trip, the turbine stop valves close. To minimize steam bypassed to the main condenser, recirculation flow is automatically runback and a SCRRI (selected control rod run in) is initiated to reduce the reactor power. The load rejection event causes the fast opening of the bypass valves. Steam bypass will sufficiently control the pressure, because of their 110% bypass capacity. A SCRRI and RIP runback are also initiated to reduce the reactor power. This study also investigated the sensitivity analysis of turbine bypass flow, runback rate of RIPS and SCRRI to observe how they affect fuel surface heat flux, neutron flux and water level, etc. The results show that turbine bypass flow has larger impacts on dome pressure than RIPS runback rate and SCRRI. This study also indicates that test criteria in turbine trip and load rejection transients are met and Lungmen RETRAN model is performing well and applicable for Lungmen startup test predictions and analyses.

This content is only available via PDF.
You do not currently have access to this content.