Abstract

A powerful idea for deterministic global optimization is the use of global feasible search, namely, algorithms that guarantee finding feasible solutions of nonconvex problems or prove that none exists. In this article, a set of conditions for global feasible search algorithms is established. The utility of these conditions is demonstrated on two algorithms that solve special problem classes globally. Also, a new model transformation is shown to convert a generalized polynomial problem into one of the special classes above. A flywheel design example illustrates the approach. A sequel article provides further computational details and design examples.

This content is only available via PDF.
You do not currently have access to this content.