Abstract

This paper presents a stress analysis method and test results of a ring structure reinforced with SCS-6/Ti-15-3 MMC under an applied internal radial load. To assess the structural integrity of an MMC reinforced component, the state of stress within the component must be determined. Two major factors complicating the state of stress in the given MMC reinforced rings are the stress concentrations caused by the load fixture and the thermal residual stresses induced during processing. To model the stress concentrations, the ring and its load fixture were modeled as a 3-d solid finite element model. To calculate the processing residual stresses, a 2-d axisymetric finite element thermal stress analysis was completed. Plasticity was modeled with the 2-d axisymetric finite element model accounting for the nonlinear response of the MMC core and monolithic sheath. Testing of the rings at room and high temperature showed good correlation to load-deflection calculations while ultimate strength was far less than predicted. Subsequent post failure analysis revealed preexisting damage within the MMC which was not detected by pretest NDE inspections. This damage did not significantly affect the measured stiffness of the ring, but diminished the ultimate strength by reducing the capability of the MMC in a localized area.

This content is only available via PDF.
You do not currently have access to this content.