Environmental noise problems become an standard topic across the years. Acoustic barriers have been purposed as a possible solution because they can act creating an acoustic attenuation zone which depends on the sound frequency, reducing the sound transmission through it. It was demonstrated that at high sound frequencies the effect of the barriers is more pronounced than at low frequencies, due to the diffraction in their edges. Sonic Crystals (SCs) are periodic arrays of scatterers embedded in a host material with strong modulation of its physical properties, that produces band gaps attenuation in frequencies related with their geometry. These frequencies are explained by the well known Bragg’s diffraction inside the crystal. SCs present different high symmetry directions, where the Bragg’s peaks appears in different frequencies ranges due to the variation of the geometry in each direction. Recently, some authors have studied the possibility to use SCs to reduce noise in free-field condition. Also, it was showed that SCs built by trees are acoustic systems that present acoustic band gaps in low frequency range due to the geometric distribution of the trees. These results led us think that these structures are a suitable device to reduce noise, this means SCs could be use as acoustic barriers. Nevertheless the technological application of these devices for controlling the noise present some problems. First, the angular dependence of the frequencies attenuated when the sound impinges over the SC. Second, the fact that the necessary space to put the SC is bigger than in the case of the traditional acoustic barriers. Finally, the necessity of some robust and long-lasting materials to use them outdoors. In this paper we show the possibility to use different materials (rigid, mixed or soft) to make scatterers, explaining their advantages or disadvantages. These materials in conjunction with some optimization methods will allow us find some solutions to the problems mentioned above. We will relate both acoustic systems, acoustic barriers and SCs, making a comparison of the main properties of each one and then, we will present the technological possibilities to design acoustic barriers based on SCs.

This content is only available via PDF.
You do not currently have access to this content.