A new metamodeling approach is proposed to characterize the output (response) random process of a dynamic system with random variables, excited by input random processes. The metamodel is then used to efficiently estimate the time-dependent reliability. The input random processes are decomposed using principal components or wavelets and a few simulations are used to estimate the distributions of the decomposition coefficients. A similar decomposition is performed on the output random process. A Kriging model is then built between the input and output decomposition coefficients and is used subsequently to quantify the output random process corresponding to a realization of the input random variables and random processes. In our approach, the system input is not deterministic but random. We establish therefore, a surrogate model between the input and output random processes. The quantified output random process is finally used to estimate the time-dependent reliability or probability of failure using the total probability theorem. The proposed method is illustrated with a corroding beam example.

This content is only available via PDF.
You do not currently have access to this content.