A one dimensional dynamic system model is developed to accurately simulate a two-phase microchannel electronics cooling loop. This model is based on the single component mixture equations for mass, momentum and energy. These equations are solved numerically using a finite volume method in conjunction with the SIMPLE algorithm. To calculate the pressure losses and heat transfer state of the art empirical correlations are used. Furthermore size effects of a typical microchannel cooling system are investigated with the new model. Special attention is given to the accumulator size and its limitations for portable applications. A simple model to investigate the accumulator size effect on the loop is developed and compared to numerical results obtained from the system model. The influence of various loop parameters and possible improvements are also investigated. Finally the effect of using different coolants is studied.

You do not currently have access to this content.