It has been a common practice to use cooling passages in gas turbine blade in order to keep the blade temperatures within the operating range. Insufficiently cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To design better cooling passages, better understanding of the flow patterns within the complicated flow channels is essential. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Power output and the efficiency of turbine are completely related to gas firing temperature from chamber. The increment of gas firing temperature is limited by the blade material properties. Advancements in the cooling technology resulted in high firing temperatures with acceptable material temperatures. To better design the cooling channels and to improve the heat transfer, many researchers are studying the flow patterns inside the cooling channels both experimentally and computationally. In this paper, the authors present the performance of three turbulence models using TEACH software code in comparison with the experimental values. To test the performance, a square duct with rectangular ribs oriented at 90° and 45° degree and placed at regular intervals. The channel also has bleed holes. The normalized Nusselt number obtained from simulation are validated with that of experiment. The Reynolds number is set at 10,000 for both the simulation and experiment. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. The three-dimensional turbulent flows and heat transfer are numerically studied by using several different turbulence models, such as non-linear low-Reynolds number k-omega and Reynolds Stress (RSM) models. In k-omega model the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. The outcome of this study will help determine the best suitable turbulence model for future studies.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4940-8
PROCEEDINGS PAPER
Computational Study of Gas Turbine Blade Cooling Channel
R. S. Amano,
R. S. Amano
University of Wisconsin-Milwaukee, Milwaukee, WI
Search for other works by this author on:
Krishna Guntur,
Krishna Guntur
University of Wisconsin-Milwaukee, Milwaukee, WI
Search for other works by this author on:
Jose Martinez Lucci
Jose Martinez Lucci
University of Wisconsin-Milwaukee, Milwaukee, WI
Search for other works by this author on:
R. S. Amano
University of Wisconsin-Milwaukee, Milwaukee, WI
Krishna Guntur
University of Wisconsin-Milwaukee, Milwaukee, WI
Jose Martinez Lucci
University of Wisconsin-Milwaukee, Milwaukee, WI
Paper No:
IHTC14-22920, pp. 239-247; 9 pages
Published Online:
March 1, 2011
Citation
Amano, RS, Guntur, K, & Martinez Lucci, J. "Computational Study of Gas Turbine Blade Cooling Channel." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 5. Washington, DC, USA. August 8–13, 2010. pp. 239-247. ASME. https://doi.org/10.1115/IHTC14-22920
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
J. Turbomach (July,2012)
Large Eddy Simulation of Flow and Heat Transfer in the 180 ‐ Deg Bend Region of a Stationary Gas Turbine Blade Ribbed Internal Cooling Duct
J. Turbomach (October,2006)
Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilizing PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium
J. Eng. Gas Turbines Power (January,1999)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3