Abstract

A continuum solidification model is used to study transport phenomena in a simulated Czochralski system for various rotation rates of the crystal and crucible. Solidification occurs on a cylindrical seed from the top surrounded by water in the crucible. An enthalpy formulation is adopted for numerical solution of convection-diffusion controlled solidification problems. Predicted solid-liquid interface and temperature distribution are in good agreement with the liquid crystal visualization experiments.

This content is only available via PDF.
You do not currently have access to this content.