A recent numerical study [1] involving micro-size Phase- Change-Materials (PCM) particles in micro-channels revealed significant heat transfer enhancement, provided that an optimal balance among the Reynolds number, particle size, tube length and heat flux is achieved. The numerical simulation is based on a model developed in [1] for non-thermal equilibrium, twophase (solid-fluid) flow using the continuum theory, in which each phase is treated separately in thermal, mass and momentum transports, yet they are related through interaction terms. A particle viscosity μP is introduced in this model and it's not available for the system of liquid-solid two phase flow. Therefore, this paper focuses on the study of the particle viscosity and its relation to the bulk viscosity to clarify its influence to the heat transfer enhancement effect of the PCM slurry flow. A review and comparative analysis of the available literature concerning particulate flow viscosity are presented. Different correlations to calculate the bulk viscosities are analyzed and their application range and limitations are discussed. Then, by using these different viscosity correlations to the numerical simulations, their influence to the heat transfer enhancement effect of the PCM slurry flow is discussed and a more realistic particle viscosity correlation for the PCM slurry flow is suggested through comparison with our experimental results.

1.
Xing
K. Q.
,
Tao
Y. -X
, and
Hao
Y. L.
,
2005
, “
Performance Evaluation of Liquid Flow with PCM Particles in Microchannels
”,
Journal of Heat Transfer
, vol.
127
, pp.
931
940
.
2.
Tuckerman
D. B.
and
Pease
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
”,
IEEE Electron Device Letters
, vol.
2
, no.
5
, pp.
126
129
.
3.
Ortega, A., 2002, “What Are the Heat Flux Limits of Air Cooling?”, 2002 International Mechanical Congress and Exposition, Panel: Challenges in Cooling High Heat Flux Electronics Systems, November 17–22, New Orleans, LA.
4.
Gromoll, B., 1994, “Advanced Micro Air-Cooling Systems for High Density Packaging”, The 10th IEEE Semiconductor Thermal Measurement and Management Symposium, February 1–3, 1994, pp.53–58.
5.
Mechalick E. M. and Tweedie A. T., 1975, “Two component thermal energy storage material”, Report NSF/RANN/SE/AER-74-09186, National Science Foundation, Washington, D.C.
6.
Tao, Y. -X., Moreno, R., and Hao, Y. L., 2003, “Design analysis of a 3-D, ultra-high performance, scalable, micro convective heat sink with NPCM,” First International Conference on Microchannels and Minichannels, April 24–25, Rochester, New York.
7.
Hao
Y. L.
, and
Tao
Y. -X.
,
2004
, “
A Numerical Model For Phase Change Suspension Flow In Microchannels
,”
Numerical Heat Transfer: Part A.
, vol.
46
, no.
1
, pp.
55
77
.
8.
Einstein
A.
,
1906
, “
Eine neue Bestimmung der Moleku¨ldimensionen
”,
Annalen der Physik
, vol.
19
, pp.
289
306
.
9.
Einstein
A.
,
1911
, “
Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleku¨ldimensionen
”,
Annalen der Physik
, vol.
34
, pp.
591
592
.
10.
Guth
E.
and
Simha
R.
,
1936
,
Kolloid Zeitschrift
, vol.
74
, p.
266
266
.
11.
Vand
V.
,
1948
a, “
Viscosity of solutions and suspensions. I. Theory
”,
Journal of Physical Chemistry
, vol.
52
, no.
2
, pp.
277
299
.
12.
Robinson
J.
,
1949
, “
The viscosity of suspensions of spheres
”,
Journal of Physical Chemistry
, vol.
53
, no.
7
, pp.
1042
1056
.
13.
Mooney
M.
,
1951
, “
The viscosity of a concentrated suspension of spherical particles
”,
Journal of Colloid Science
, vol.
6
, no.
2
, pp.
162
170
.
14.
Krieger
I. M.
and
Dougherty
T. J.
,
1959
, “
A mechanism for non-Newtonian flow in suspensions of spherical particles
”,
Transactions of The Society of Rheology
, vol.
3
, no.
1
, pp.
137
152
.
15.
Frankel
N. A.
and
Acrivos
A.
,
1967
, “
On the viscosity of a concentrated suspension of solid spheres
”,
Chemical Engineering Science
, vol.
22
, no.
6
, pp.
847
853
.
16.
Krieger
I. M.
,
1972
, “
Rheology of monodisperse latices
”,
Advances in Colloid and Interface Science
, vol.
2
, no.
3
, pp.
111
136
.
17.
Graham
A. L.
,
1981
, “
On the viscosity of suspensions of solid spheres
”,
Applied Scientific Research
, vol.
37
, pp.
275
286
.
18.
Bicerano
J.
,
Douglas
J. F.
and
Brune
D. A.
, “
Model for the viscosity of particle dispersions
”,
Journal of macromolecular science, Reviews in macromolecular chemistry and physics
, vol.
39
, no.
4
, pp.
561
642
.
19.
Roscoe
R.
,
1952
, “
The viscosity of suspensions of rigid spheres
”,
British Journal of Applied Physics
, vol.
3
, pp.
267
269
.
20.
Kovar
J.
and
Fortelny
I.
,
1984
, “
Effect of polydispersity on the viscosity of a suspension of hard spheres
”,
Rheologica Acta
, vol.
23
, pp.
454
456
.
21.
Arrhenius
S.
,
1887
,
Zeitschrift Physikalische Chemie
, vol.
1
, p.
287
287
.
22.
Eilers
H.
,
1941
,
Kolloid Zeitschrif
, vol.
97
, p.
313
313
.
23.
Vand
V.
,
1945
, “
Theory of Viscosity of Concentrated Suspensions
”,
Nature
, vol.
155
, pp.
364
365
.
24.
Vand
V.
,
1948
b, “
Viscosity of solutions and suspensions. II. Experimental determination of the viscosityconcentration function of spherical suspensions
”,
Journal of Physical Chemistry
, vol.
52
, no.
2
, pp.
300
314
.
25.
Higginbotham
G. H.
,
Oliver
D. R.
and
Ward
S. G.
,
1958
, “
Studies of the viscosity and sedimentation of suspensions. Part 4. Capillary-tube viscometry applied to stable suspensions of spherical particles
”,
British Journal of Applied Physics
, vol.
9
, pp.
372
377
.
26.
Rutgers
I. R.
,
1962
, “
Relative Viscosity of Suspensions of Rigid Spheres in Newtonian Liquids
”,
Rheologica Acta
, vol.
2
, no.
3
, pp.
202
210
.
27.
Thomas
D. G.
,
1965
, “
Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles
”,
Journal of colloid and interface science
, vol.
20
, no.
3
, pp.
267
277
.
28.
Chong
J. S.
,
Christiansen
E. B.
and
Baer
A. D.
,
1971
, “
Rheology of concentrated dispersions
”,
Journal of Applied Polymer Science
, vol.
15
, pp.
2007
2021
.
29.
Kitano
T.
,
Kataoka
T.
and
Shirota
T.
,
1981
, “
An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers
”,
Rheologica Acta
, vol.
20
, no.
2
, pp.
207
209
.
30.
Metzner
A. B.
,
1985
, “
Rheology of suspensions in polymeric liquids
”,
Journal of Rheology
, vol.
29
, no.
6
, pp.
739
775
.
31.
Sengun
M. Z.
and
Probstein
R. F.
,
1989
, “
Bimodal model of slurry viscosity with application to coal-slurries. Part 2. High shear limit behavior
”,
Rheologica Acta
, vol.
28
, no.
5
, pp.
394
401
.
32.
Storms
R. F.
,
Ramarao
B. V.
and
Weiland
R. H.
,
1990
, “
Low shear rate viscosity of bimodally dispersed suspensions
”,
Powder Technology
, vol.
63
, no.
3
, pp.
247
259
.
33.
Ilic
V.
and
Phan-Thien
N.
,
1994
, “
Viscosity of concentrated suspensions of spheres
”,
Rheologica Acta
, vol.
33
, pp.
283
291
.
34.
He
D.
and
Ekere
N. N.
,
2001
, “
Viscosity of concentrated noncolloidal bidisperse suspensions
”,
Rheologica Acta
, vol.
40
, pp.
591
598
.
35.
Tao, Y. -X., Xing, K. Q., Maloji, P. and Hao, Y. L., 2006, “Low Reynolds number limit of heat transfer enhancement for phase change material slurry flow in micro/mini channels”, International Heat Transfer Conference IHTC-13, August 13–18, Sydney, Australia, in publication.
This content is only available via PDF.
You do not currently have access to this content.