Turbine vanes are generally manufactured as single- or double-airfoil sections that are assembled into a full turbine disk. The gaps between the individual sections, as well as a gap between the turbine disk and the combustor upstream, provide leakage paths for relatively higher pressure coolant flows. This leakage is intended to prevent ingestion of the hot combustion flow in the primary gas path. At the vane endwall, this leakage flow can interfere with the complex vortical flow present there, and thus affect the heat transfer to that surface. To determine the effect of leakage flow through the gaps, heat transfer coefficients were measured along a first-stage vane endwall and inside the mid-passage gap for a large-scale cascade with a simulated combustor-turbine interface slot and a mid-passage gap. For increasing combustor-turbine leakage flows, endwall surface heat transfer coefficients showed a slight increase in heat transfer. The presence of the mid-passage gap, however, resulted in high heat transfer near the passage throat where flow is ejected from that gap. Computational simulations indicated that a small vortex created at the gap flow ejection location contributed to the high heat transfer. The measured differences in heat transfer for the various mid-passage gap flowrates tested did not appear to have a significant effect.

This content is only available via PDF.
You do not currently have access to this content.