The influence of tip leakage flow on the performance of turbomachinery, both from an aerodynamic and acoustic point of view, has been demonstrated by several authors. However, most studies present in the literature are focused on the effects of tip leakage from an aerodynamic point of view and often forgo the mechanisms associated with the acoustics effect. The effect of different tip geometries is also still ill understood.

The current advancement of a numerical study delving into tip leakage flow noise in low-speed turbomachinery applications is presented in this paper. The study as a whole aims to investigate the mechanisms associated with tip leakage flow noise on different axial fans with varying tip configurations. The study is carried out using lattice-Boltzmann simulations that allow to obtain the aerodynamic and aeroacoustic field simultaneously.

As a first step in this investigation of tip flow noise, this paper focuses on a free-tip axial flow fan with a complex tip geometry. The global aerodynamic and acoustic performance of the fan is evaluated numerically and compared to available experimental results. An investigation of the simulated flowfield with regards to the observed acoustics is then carried out.

This content is only available via PDF.
You do not currently have access to this content.