Cancer is a leading cause of death worldwide. There has been extensive research on cancer in recent decades, with many studies focusing on Circulating Tumor Cells (CTCs), i.e., cancer cells shed into the circulating bloodstream from a primary tumor site. CTCs are mainly responsible for initiating metastases, and can be used as an indicator for early cancer detection. Investigating CTCs and the related detection methods such as microfiltration is of great importance. CTCs as well as other cells are normally composed of highly viscous nucleus and cytoplasm which are encapsulated by the outermost layer of cortical membrane. In order to account for the effects of viscous nucleus and cytoplasm on the microfiltration process and study the dynamic characteristics comprehensively, a realistic model is preferred. In this research, we employ the compound droplet model consisting of three layers, the layer of cell membrane, cytoplasm and nucleus, to capture the full range of CTCs behavior during the microfiltration process. The compound cell deformation and pressure signature during microfiltration are studied numerically. Also discussed are the effects of nucleus-cytoplasm ratio (N/C ratio), their viscosity as well as surface tension on the cell behavior when it squeezing through the filter channel. Our results can gain insight into the physics behind the filtering process and provide some guidance to the design and optimization of such devices.
Skip Nav Destination
ASME 2016 International Mechanical Engineering Congress and Exposition
November 11–17, 2016
Phoenix, Arizona, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5061-9
PROCEEDINGS PAPER
A Numerical Study on Highly Viscous Compound Cancer Cell Microfiltration
Xiaolong Zhang,
Xiaolong Zhang
Washington State University, Vancouver, WA
Search for other works by this author on:
Xiaolin Chen,
Xiaolin Chen
Washington State University, Vancouver, WA
Search for other works by this author on:
Hua Tan
Hua Tan
Washington State University, Vancouver, WA
Search for other works by this author on:
Xiaolong Zhang
Washington State University, Vancouver, WA
Xiaolin Chen
Washington State University, Vancouver, WA
Hua Tan
Washington State University, Vancouver, WA
Paper No:
IMECE2016-66953, V007T09A052; 8 pages
Published Online:
February 8, 2017
Citation
Zhang, X, Chen, X, & Tan, H. "A Numerical Study on Highly Viscous Compound Cancer Cell Microfiltration." Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids Engineering. Phoenix, Arizona, USA. November 11–17, 2016. V007T09A052. ASME. https://doi.org/10.1115/IMECE2016-66953
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Compound Droplet Modeling for Circulating Tumor Cell Microfiltration With Adaptive Meshing Refinement
J. Fluids Eng (November,2020)
Extrudate Swelling: Physics, Models, and Computations
Appl. Mech. Rev (October,1995)
Numerical Prediction Method for Growth and Deformation of Filter Cakes
J. Fluids Eng (November,2006)
Related Chapters
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Introduction
Nanoparticles and Brain Tumor Treatment
Conclusions
Nanoparticles and Brain Tumor Treatment