In the current study, the influence of different rotation conditions on the flow behavior is experimentally investigated by a new system which is designed for time-resolved PIV measurements of the smooth channels at rotation conditions. The Reynolds number equals 15000 and the rotation number ranges from 0 to 0.392 with an interval of 0.098.

This new time-resolved Particle Image Velocimetry system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode can provide a less than 1mm thickness sheet light. 6400 frames can be captured in one second by the high-speed camera. These two parts of the system are fixed on a rotating disk. In this case, the relative velocity of flows in the rotating smooth square channel can be measured directly to reduce the measurement error. This system makes high-speed camera close to the rotating channel, which allows a high resolution for the measurements of main stream. In addition, high accuracy and temporal resolution realize a detailed analysis of boundary layer characteristics in rotation conditions. Based on this system, experimental investigation has been undertaken. Results are presented of the evolution of velocity and boundary layer thickness at various rotation numbers and different circumferential positions.

This content is only available via PDF.
You do not currently have access to this content.