Abstract

A 6.67 scale model of the Advanced Recirculation Total Impingement Cooling (ARTIC) gas turbine vane insert’s leading edge was designed, built using stereolithography (SLA) fabrication methods, and tested using Magnetic Resonance Velocimetry (MRV), a non-invasive data acquisition technique that captures three-dimensional, three-component velocity fields of a copper sulfate solution over the course of several hours. The experimental apparatus supplied constant flow rates through a test section placed within a 3.0 Tesla MRI magnet. Tests were run at two fully turbulent flow rates corresponding to Reynolds numbers based on hydraulic diameter of 10,000 and 20,000 with the higher flow rate case achieving dynamic similarity with the full-scale ARTIC device. The experimental results elucidated key details and intricacies of the complex flow within the insert. Analysis of flow distribution between each of the three independent impingement zones revealed a degree of measurable jet to jet variability. Stagnation and recirculation zones were detected, informing design modifications and enabling assessment of inlet effects on impingement. Measurement uncertainty was assessed and estimated to be approximately 7.5% of the peak velocity at the inlet to the central feed cavity.

This content is only available via PDF.
You do not currently have access to this content.