Abstract

High-fidelity Large Eddy Simulations (LES) were conducted to characterize the spatial and temporal structure of turbulent flows in an industrial-sized Francis turbine running at 120% of the design flow rate. Injection at a 4% and 8% flow rate is applied and investigated as a mitigation method for pressure-induced fluctuations along the draft tube. Contours of velocity and vorticity in the draft tube are presented to examine the effects of water injection. Probes placed alongside the draft tube measure the pressure signal and compare both operational regimes to characterize the pressure fluctuations. The intensity of pressure fluctuations along the draft tube wall is an order of magnitude smaller compared to that at the center. As the injection is applied, the intensity of the pressure fluctuations along the draft tube wall is increased while the intensity of pressure fluctuations in the center of the draft tube is reduced. Pressure probes in the center of the draft tube measure an 86% to 57% reduction in amplitude for 4% to 8% flow rate injection, respectively. There is a 30% to 40% increase in fluctuations along the wall for 4% to 8% flow rate injection, respectively. These changes in flow structure are due to the dissipation of the vortex rope as the injection is applied.

This content is only available via PDF.
You do not currently have access to this content.