Abstract

Integrated simulations of part structural performance, processing characteristics and warpage for the gas-assisted injection molded parts were carried out using a unified CAE model. An analysis algorithm based on DKT/VRT elements superimposed with beam elements representing gas channels of various section geometry was first developed to evaluate part structural performance. During melt/gas filling stage, a mixed control-volume/finite-element/finite-difference method combined with dual-filling-parameter technique was implemented to trace the advancements of melt and gas fronts. For the prediction of secondary gas penetration, flow model of isotropic-shrinkage origin was introduced. Cooling analysis was executed utilizing cycle-averaged boundary element approach considering hollowed core geometry within gas channels. Thermal-induced residual stress was then calculated to predict part warpage. The analysis accuracy from this unified model of 2 1/2-D characteristics show reasonable accuracy when compared with molding experiment and part bending tests. The only difference between process simulation and structure/warpage analyses is that different values of equivalent diameters assigned to beam element representing gas channel should be used, respectively.

This content is only available via PDF.
You do not currently have access to this content.