Abstract

Many nuclear steam generators have accumulated more than ten effective-full-power-years of operation. Eddy-current inspections revealed that a number of these steam generator tubes, notably those located in high local cross-flow regions, have indications of wear at some support plate elevations after five to ten years of effective-full-power operations. In the last five years, a number of technical papers on non-linear tube bundle dynamics has been published to address the effect of tube and support plate interactions. At the same time, test data relating wear and tube wall thickness losses for different material combinations and different support plate geometries became available. Based on the available data in the literature, as well as data obtained in the author’s affiliation, this paper assesses the cumulative tube wall wear after 5, 10 and 15 effective-full-power years of operation of a typical commercial nuclear steam generator, using different wear models. It is hoped that this study will shed some light on the probable mechanism that caused the observed wear in today’s operating nuclear steam generators.

This content is only available via PDF.
You do not currently have access to this content.