The rehabilitation of damaged pipelines plays a critically-important role in maintaining the integrity management of pipeline systems. The repair techniques employed by pipeline operators typically include welded Type A and Type B sleeves, as well as composite repairs. Once repairs are made, operators must trust the integrity and soundness of the repairs based on various monitoring and inspection techniques; however, there are no current widely-accepted techniques for monitoring either the reinforcement or the pipe itself.

A research program was conducted that involved the embedding of fiber optics in a steel sleeve and E-glass / epoxy composite repair systems. Measurements from the fiber optic sensors included temperature, hoop strain, and axial strain, which allowed engineers to monitor conditions in both the repair and the pipe sample. The implications of embedded technologies in pipeline repairs are far-reaching, including the ability to monitor not only the reinforcement itself, but also serve as a resource for monitoring pipeline activities including third party damage and land movement. This paper presents results from the test program, but also concepts for continued use of pipeline repair embedded technologies and their impact on the generation of large-scale data and enhancement of integrity management efforts.

This content is only available via PDF.
You do not currently have access to this content.