The finite and incremental elasticity of a random packing of identical spheres is derived using energy methods. We consider different models for the contact forces between spheres, all of which are based upon or related to the fundamental Hertz theory; we consider only the special cases of perfect friction (no tangential slip) or no tangential friction. The existence of a strain energy function for the medium depends critically upon the type of contact. If the tangential contact stiffness is independent of the normal force, then the energy is well defined for all values of the macroscopic strain. Otherwise, the strain energy of the system is path dependent, in general. However, the concept of a quadratic strain energy function is always well defined for incremental motion superimposed on large confining stress and strain. For all models considered, we derive the changes in wave speeds due to incremental strains. For the models based upon an energy function we derive expressions for the third-order elastic constants as a function of confining pressure.

1.
Bernal
J. D.
, and
Mason
J.
,
1960
, “
Coordination of Randomly Packed Spheres
,”
Nature
, Vol.
188
, pp.
910
911
.
2.
Christensen
N. I.
, and
Wang
H. F.
,
1985
, “
The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone
,”
Geophysics
, Vol.
50
, pp.
207
213
.
3.
Cundall, P. A., Jenkins, J. T., and Ishibashi, I., 1989 “Evolution of elastic moduli in a deforming granular assembly,” Powders and Grains, J. Biarez and R. Gourves, eds., Balkema, Rotterdam, pp. 319–322.
4.
Deresiewicz
H.
,
1958
a, “
Stress-Strain Relations for a Simple Model of a Granular Medium
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
25
, pp.
402
406
.
5.
Deresiewicz
H.
,
1958
b, “
Mechanics of granular media
,”
Adv. Appl. Mech.
, Vol.
5
, pp.
233
306
.
6.
Digby
P. J.
,
1981
, “
The effective elastic moduli of porous granular rock
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
48
, pp.
803
808
.
7.
Domenico
S. N.
,
1977
, “
Elastic properties of unconsolidated porous sand reservoirs
,”
Geophysics
, Vol.
42
, pp.
1339
1368
.
8.
Duffy
J.
, and
Mindlin
R. D.
,
1957
, “
Stress-Strain Relations and Vibrations of a Granular Medium
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
24
, pp.
585
593
.
9.
Goddard
J. D.
,
1990
, “
Nonlinear elasticity and pressure-dependent wave speeds in granular media
,”
Proc. R. Soc. Lond.
, Vol.
A430
, pp.
105
131
.
10.
Green, R. E., 1973, Ultrasonic Investigation of Mechanical Properties, (Treatise on Materials Science and Technology, Vol. 3), Academic Press, New York.
11.
Jenkins, J. T., 1991, “Anisotropic elasticity for random arrays of identical spheres,” Modern Theory of Anisotropic Elasticity and Applications, J. Wu, T. C. T. Ting, and D. M. Barnett, eds., SIAM, Philadelphia, PA, pp. 368–377.
12.
Jenkins, J. T., Cundall, P. A., and Ishibashi, I., 1989 “Micromechanical modeling of granular materials with the assistance of experiments and numerical simulations,” Powders and Grains, J. Biarez and R. Gourves, eds., pp. 257–264. Balkema, Rotterdam.
13.
Johnson
D. L.
,
Kostek
S.
, and
Norris
A. N.
,
1994
, “
Nonlinear Tube Waves
,”
J. Acoust. Soc. Am.
, Vol.
96
, pp.
1829
1843
.
14.
Johnson, D. L., and Norris, A. N., 1995, “Rough elastic spheres in contact,” J. Mech. Phys. Solids, to be published.
15.
Johnson
D. L.
, and
Plona
T. J.
,
1982
, “
Acoustic Slow Waves and the Consolidation Transition
,”
J. Acoust. Soc. Am.
, Vol.
72
, pp.
556
565
.
16.
Landau, L. D., and Lifshitz, E. M., 1986, Theory of Elasticity, 3rd ed., Pergamon Press, Oxford, pp. 106–107.
17.
Mindlin
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
71
, pp.
259
268
.
18.
Mindlin
R. D.
, and
Deresiewicz
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
75
, pp.
327
344
.
19.
Schwartz
L. M.
,
Johnson
D. L.
, and
Feng
S.
,
1984
, “
Vibrational Modes in Granular Materials
,”
Phys. Rev. Lett.
, Vol.
52
, pp.
831
834
.
20.
Schwartz, L. M., Murphy, W. F., III, and Berryman, J. G., 1994, “Stress-induced transverse isotropy in rocks,” Proceedings of the Society of Exploration Geophysicists, Annual Meeting, Los Angeles, CA, Oct. 23–27, 1081–1085.
21.
Spence
D. A.
,
1968
, “
Self similar solutions to adhesive contact problems with incremental load
,”
Proc. R. Soc. Lond.
, Vol.
A305
, pp.
55
80
.
22.
Toupin
R. A.
, and
Bernstein
B.
,
1961
, “
Sound waves in deformed perfectly elastic materials. Acoustoelastic effect
,”
J. Acoust. Soc. Am.
, Vol.
33
, pp.
216
225
.
23.
Truesdell, C., and Noll, W., 1965, “The nonlinear field theories of mechanics,” Handbuch der Physik III/3, S. Flugge, ed., Springer, New York.
24.
Walton
K.
,
1987
, “
The effective elastic moduli of a random packing of spheres
,”
J. Mech. Phys. Solids
, Vol.
35
, pp.
213
226
.
25.
Winkler
K. W.
,
1983
, “
Contact stiffness in granular porous materials: Comparison between theory and experiment
,”
Geophys. Res. Lett.
, Vol.
10
, pp.
1073
1076
.
This content is only available via PDF.
You do not currently have access to this content.