A plane-strain study of steady sliding by a smooth rigid indentor at any constant speed on a class of orthotropic or transversely isotropic half-spaces is performed. Exact solutions for the full displacement fields are constructed, and applied to the case of the generic parabolic indentor. The closed-form results obtained confirm previous observations that physically acceptable solutions arise for sliding speeds below the Rayleigh speed, for a single critical transonic speed, and for all supersonic speeds. Continuity of contact zone traction is lost for the latter two cases. Calculations for five representative materials indicate that contact zone width achieves minimum values at high, but not critical, subsonic sliding speeds. A key feature of the analysis is the factorization that gives, despite anisotropy, solution expressions that are rather simple in form. In particular, a compact function of the Rayleigh-type emerges that leads to a simple exact formula for the Rayleigh speed itself.

1.
Craggs
,
J. W.
, and
Roberts
,
A. M.
,
1967
, “
On the Motion of a Heavy Cylinder Over the Surface of an Elastic Half-Space
,”
ASME J. Appl. Mech.
,
24
, pp.
207
209
.
2.
Gerstle
,
F. B.
, and
Pearsall
,
G. W.
,
1974
, “
The Stress Response of an Elastic Surface to a High-Velocity, Unlubricated Punch
,”
ASME J. Appl. Mech.
,
41
, pp.
1036
1040
.
3.
Brock
,
L. M.
,
1981
, “
Sliding and Indentation by a Rigid Half-Wedge With Friction and Displacement Coupling
,”
Int. J. Eng. Sci.
,
19
, pp.
33
40
.
4.
Brock
,
L. M.
,
1996
, “
Some Analytical Results for Heating due to Irregular Sliding Contact
,”
Indian J. Pure Appl. Math.
,
27
, pp.
1257
1278
.
5.
Georgiadis
,
H. G.
, and
Barber
,
J. R.
,
1993
, “
On the Super-Rayleigh/Subseismic Elastodynamic Indentation Problem
,”
J. Elast.
,
31
, pp.
141
161
.
6.
Brock
,
L. M.
, and
Georgiadis
,
H. G.
,
2000
, “
Sliding Contact With Friction of a Thermoelastic Solid at Subsonic, Transonic and Supersonic Speeds
,”
J. Therm. Stresses
,
23
, pp.
629
656
.
7.
Brock
,
L. M.
,
1999
, “
Sliding Contact With Friction at Arbitrary Constant Speeds on a Pre-stressed Highly Elastic Half-Space
,”
J. Elast.
,
57
, pp.
105
132
.
8.
Green, A. E., and Zerna, W., 1968, Theoretical Elasticity, 2nd Ed., Oxford University Press, London.
9.
Beatty
,
M. F.
, and
Usmani
,
S. A.
,
1975
, “
On the Indentation of a Highly Elastic Half-Space
,”
Q. J. Mech. Appl. Math.
,
28
, pp.
47
62
.
10.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
11.
Sokolnikoff, I. S., 1983, Mathematical Theory of Elasticity, Krieger, Malabar, FL.
12.
Scott
,
R. A.
, and
Miklowitz
,
J.
,
1967
, “
Transient Elastic Waves in Anisotropic Plates
,”
ASME J. Appl. Mech.
,
34
, pp.
104
110
.
13.
Nye, J. F., 1957, Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford.
14.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
,
2000
, “
Invariant Elastic Constants and Eigentensors of Orthorhombic, Tetragonal, Hexagonal and Cubic Crystalline Media
,”
Acta Crystallogr.
,
A56
, pp.
319
331
.
15.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff, The Hague.
16.
Brock
,
L. M.
,
Georgiadis
,
H. G.
, and
Hanson
,
M. T.
,
2001
, “
Rapid Indentation of Transversely Isotropic or Orthotropic Half-Spaces
,”
ASME J. Appl. Mech.
,
68
, pp.
490
495
.
17.
Erdogan, F., 1976, “Mixed Boundary Value Problems in Mechanics,” Mechanics Today, Vol. 4 S. Nemat-Nasser, ed., Pergamon Press, New York.
18.
Gradshteyn, I. S., and Ryzhik, I. M., 1980, Table of Integrals, Series and Products, Academic Press, San Diego, CA.
19.
Brock
,
L. M.
,
1999
, “
Rapid Sliding Indentation With Friction of a Pre-stressed Thermoelastic Material
,”
J. Elast.
,
53
, pp.
161
188
.
20.
van der Pol, B., and Bremmer, H., 1950, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, London.
21.
Brock
,
L. M.
,
1998
, “
Analytical Results for Roots of Two irrational Functions in Elastic Wave Propagation
,”
J. Aust. Math. Soc. B, Appl. Math.
,
B40
, pp.
72
79
.
22.
Norris
,
A. N.
, and
Achenbach
,
J. D.
,
1984
, “
Elastic Wave Diffraction by a Semi-infinite Crack in a Transversely Isotropic Material
,”
Q. J. Mech. Appl. Math.
,
37
, pp.
565
580
.
23.
Carrier, G. F., and Pearson, C. E., 1988, Partial Differential Equations, 2nd Ed., Academic Press, San Diego, CA.
You do not currently have access to this content.