Viscoelastic deformation caused in symmetric laminated plates by release of fiber prestress and by uniform thermomechanical loads is analyzed on the constituent, ply and overall laminate scales with the Transformation Field Analysis (TFA) method (G. J. Dvorak, Proc. R. Soc. Lond., 1992, A437, pp. 311–327). Fiber prestress is applied in individual plies prior to matrix cure and released after matrix consolidation. Linear or nonlinear viscoelastic constitutive relations are used to evaluate the inelastic deformation rates in terms of current constituent stress averages. The TFA method regards both thermal and inelastic strains as piecewise uniform eigenstrains acting in superposition with mechanical loads and fiber prestress release on an elastic laminate. Interactions between the eigenstrains at the three different size scales are described by certain influence functions derived from micromechanical analysis of the plies and laminates. Applications describe stress relaxation in two carbon/epoxy laminates after cooling from the curing temperature and release of optimized fiber prestress, that allows maximum tensile load application while keeping both interior and free-edge stresses within prescribed strength limits. Subsequent viscoelastic deformation under constant rate loading, and stress relaxation caused by a sustained application of an elevated temperature to a laminate without prestress are also analyzed. Results are presented in the form of initial failure maps that identify overall stress states which may or may not initiate a specific damage mode in the laminate.

1.
Dvorak
,
G. J.
, and
Suvorov
,
A. P.
,
2000
, “
Effect of Fiber Prestress on Residual Stresses and Onset of Damage in Symmetric Laminates
,”
Compos. Sci. Technol.
,
60
, (
8
), pp.
1129
1139
.
2.
Suvorov
,
A. P.
, and
Dvorak
,
G. J.
,
2001
, “
Optimized Fiber Prestress for Reduction of Free Edge Stresses in Composite Laminates
,”
Int. J. Solids Struct.
,
38
, pp.
6751
6786
.
3.
Dvorak
,
G. J.
,
Prochazka
,
P.
, and
Srinivas
,
M. V.
,
1999
, “
Design and Fabrication of Submerged Cylindrical Laminates I
,”
Int. J. Solids Struct.
,
36
, pp.
3917
3943
.
4.
Srinivas
,
M. V.
,
Dvorak
,
G. J.
, and
Prochazka
,
P.
,
1999
, “
Design and Fabrication of Submerged Cylindrical Laminates II. Effect of Fiber Prestress
,”
Int. J. Solids Struct.
,
36
, pp.
3945
3976
.
5.
Schapery
,
R. A.
,
1967
, “
Stress Analysis of Viscoelastic Composite Materials
,”
J. Compos. Mater.
,
1
, pp.
228
267
.
6.
Lou
,
Y. C.
, and
Schapery
,
R. A.
,
1971
, “
Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic
,”
J. Compos. Mater.
,
5
, pp.
208
234
.
7.
Mignery
,
L. A.
, and
Schapery
,
R. A.
,
1991
, “
Viscoelastic and Nonlinear Adherent Effects in Bonded Composite Joints
,”
J. Adhes.
,
34
, pp.
17
40
.
8.
Schapery
,
R. A.
,
1993
, “
Compressive Strength and Failure Time Based on Local Buckling in Viscoelastic Composites
,”
Appl. Mech. Rev.
,
46
, pp.
221
228
.
9.
Sims, D. F., and Halpin, J. C., 1974, “Methods for Determining the Elastic and Viscoelastic Response of Composite Materials,” Composite Materials: Testing and Design (Third Conference), ASTM STP, Philadelphia, PA, 546, pp. 46–66.
10.
Wang
,
T. M.
, and
Daniel
,
I. M.
,
1992
, “
Thermoviscoelastic Analysis of Residual Stresses and Warpage in Composite Laminates
,”
J. Compos. Mater.
,
26
, pp.
883
899
.
11.
Skudra
,
A. M.
, and
Auzukalns
,
Y. V.
,
1973
, “
Creep and Long-Term Strength of Unidirectional Reinforced Plastics in Compression
,”
Polym. Mech.
,
6
, pp.
718
722
.
12.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, John Wiley and Sons, New York.
13.
Xia
,
Z.
, and
Ellyin
,
F.
,
1998
, “
Time-Dependent Behavior and Viscoelastic Constitutive Modelling of an Epoxy Polymer
,”
Polymer and Polymer Comp.
,
6
, pp.
75
83
.
14.
Hi
,
Y.
,
Xia
,
Z.
, and
Ellyin
,
F.
,
2000
, “
Mechanical Behavior of an Epoxy Resin Under Multiaxial Loadings. Part I: Experimental Study
,”
Polym. Polym. Comp.
,
8
, pp.
11
18
.
15.
Hi
,
Y.
,
Xia
,
Z.
, and
Ellyin
,
F.
,
2000
, “
Mechanical Behavior of an Epoxy Resin Under Multiaxial Loadings. Part II: Comparison of Viscoelastic Constitutive Model Prediction
,”
Polym. Polym. Comp.
,
8
, pp.
157
166
.
16.
Ellyin, F., Hu, Y., and Xia, Z., 2000, “Multiaxial Behavior and Viscoelastic Constitutive Modeling of Epoxy Polymers,” Recent Trends in Constitutive Modeling of Advanced Materials, AMD Vol. 239, pp. 13–25.
17.
Dvorak
,
G. J.
,
1992
, “
Transformation Field Analysis of Inelastic Composite Materials
,”
Proc. R. Soc. London, Ser. A
,
437
, pp.
311
327
.
18.
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1992
, “
On Transformation Strains and Uniform Fields in Multiphase Elastic Media
,”
Proc. R. Soc. London, Ser. A
,
A437
, pp.
291
310
.
19.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
, and
Wafa
,
A. M.
,
1994
, “
Implementation of the Transformation Field Analysis for Inelastic Composite Materials
,”
Comput. Mech.
,
14
, pp.
201
228
.
20.
Levin
,
V. M.
,
1967
, “
Thermal Expansion Coefficients of Heterogeneous Materials
,”
Izv. AN SSSR, Mekhanika Tverdogo Tela
,
2
, pp.
88
94
(English Translation, Mechanics of Solids, 11, pp. 58–61).
21.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
22.
Dvorak
,
G. J.
, and
Srinivas
,
M. V.
,
1999
, “
New Estimates of Overall Properties of Heterogeneous Solids
,”
J. Mech. Phys. Solids
,
47
, pp.
899
920
.
23.
Blackketter
,
D. M.
, and
Upadhyaya
,
D.
,
1993
, “
Micromechanics Predictions of the Transverse Tensile Strength of Carbon Fiber/Epoxy Composites: the Influence of the Matrix and Interface
,”
Polym. Compos.
,
14
, pp.
437
446
.
24.
Adams
,
D. F.
,
King
,
T. R.
, and
Blackketter
,
D. M.
,
1990
, “
Evaluation of the Transverse Flexure Test Method for Composite Materials
,”
Compos. Sci. Technol.
,
39
, pp.
341
353
.
You do not currently have access to this content.