Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclusions) undergo multiple scattering which results in a frequency-dependent velocity and attenuation of coherent wave. The aim of this study is to analyses multiple scattering of plane compressional and shear waves in a composite containing randomly distributed spherical inclusions in a homogenous isotropic medium. To calculate effective wave numbers of ultrasonic waves propagating in the heterogeneous material, a generalized self-consistent multiple scattering model is used in this study. Numerical results for the effective phase velocity and attenuation of both P and SV waves are calculated for a wide range of frequencies and concentrations. The proposed dynamic generalized self-consistent model for particulate composites recovers both well-known static effective moduli in the static limit and the results at higher frequencies and concentrations agree well with published experimental data.

1.
Foldy
,
L. L.
,
1945
, “
The Multiple Scattering of Waves
,”
Phys. Rev.
,
67
, pp.
107
119
.
2.
Waterman
,
P. C.
, and
Truell
,
R.
,
1961
, “
Multiple Scattering of Elastic Waves
,”
J. Math. Phys.
,
2
, pp.
512
537
.
3.
Sayers
,
C. M.
, and
Smith
,
R. L.
,
1983
, “
Ultrasonic Velocity and Attenuation in an Epoxy Matrix Containing Lead Inclusion
,”
J. Phys. D: Appl. Phys.
,
16
, pp.
1189
1194
.
4.
Datta
,
S. K.
,
Ledbetter
,
H. M.
,
Shindo
,
Y.
, and
Shah
,
A. H.
,
1988
, “
Phase Velocity and Attenuation of Plane Elastic Waves in a Particulate-Reinforced Composite Medium
,”
Wave Motion
,
10
, pp.
171
182
.
5.
Shindo
,
Y.
,
Nozaki
,
H.
, and
Datta
,
S. K.
,
1995
, “
Effect of Interface Layers on Elastic Wave Propagation in a Metal Matrix Composite Reinforced by Particles
,”
ASME J. Appl. Mech.
,
62
, pp.
178
185
.
6.
O’Neill
,
T. J.
,
Tebbutt
,
J. S.
, and
Challis
,
R. E.
,
2001
, “
Convergence Criteria for Scattering Models of Ultrasonic Wave Propagation in Suspensions of Particles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
48
, pp.
419
424
.
7.
Tsang
,
L.
, and
Kong
,
J. A.
,
1980
, “
Multiple Scattering of Electro-Magnetic Waves by Random Distributions of Discrete Scatterers With Coherent Potential and Quantum Mechanical Formalism
,”
J. Appl. Phys.
,
51
, pp.
3465
3485
.
8.
Mal
,
A. K.
, and
Bose
,
S. K.
,
1974
, “
Dynamic Moduli of a Suspension of Imperfectly Bonded Spheres
,”
Proc. Cambridge Philos. Soc.
,
76
, pp.
578
600
.
9.
Datta
,
S. K.
,
1977
, “
A Self-Consistent Approach to Multiple Scattering by Elastic Ellipsoidal Inclusions
,”
ASME J. Appl. Mech.
,
44
, pp.
657
662
.
10.
Willis
,
J. R.
,
1980
, “
A Polarization Approach to the Scattering of Elastic Waves—I. Scattering by a Single Inclusion
,”
J. Mech. Phys. Solids
,
28
, pp.
287
305
.
11.
Willis
,
J. R.
,
1980
, “
A Polarization Approach to the Scattering of Elastic Waves—II. Multiple Scattering From Inclusions
,”
J. Mech. Phys. Solids
,
28
, pp.
307
327
.
12.
Varadan
,
V. K.
,
Ma
,
Y.
, and
Varadan
,
V. V.
,
1985
, “
A Multiple Scattering Theory for the Elastic Wave Propagation in Discrete Random Media
,”
J. Acoust. Soc. Am.
,
77
, pp.
375
385
.
13.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
2
, pp.
127
140
.
14.
Sabina
,
F. J.
, and
Willis
,
J. R.
,
1988
, “
A Simple Self-Consistent Analysis of Wave Propagation in Particulate Composite
,”
Wave Motion
,
10
, pp.
127
142
.
15.
Kim
,
J.-Y.
,
Ih
,
J.-G.
, and
Lee
,
B.-H.
,
1995
, “
Dispersion of Elastic Waves in Random Particulate Composites
,”
J. Acoust. Soc. Am.
,
97
, pp.
1380
1388
.
16.
Hill
,
R.
,
1965
, “
A Self Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
17.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
223
227
.
18.
Christensen
,
R. M.
,
1990
, “
A Critical Evaluation for a Class of Micro-Mechanics Model
,”
J. Mech. Phys. Solids
,
38
, pp.
379
404
.
19.
Yang
,
R.-B.
, and
Mal
,
A. K.
,
1994
, “
Multiple Scattering of Elastic Waves in a Fiber-Reinforced Composite
,”
J. Mech. Phys. Solids
,
42
, pp.
1945
1968
.
20.
Yang
,
R.-B.
, and
Mal
,
A. K.
,
1996
, “
Elastic Waves in a Composite Containing Inhomogeneous Fibers
,”
Int. J. Eng. Sci.
,
34
, pp.
67
79
.
21.
Huang
,
W.
, and
Rokhlin
,
S. I.
,
1995
, “
Frequency Dependencies on Ultrasonic Wave Velocity and Attenuation in Fiber Composites: Theory and Experiments
,”
Rev. Prog. Quant. Nondestr. Eval.
,
14
, pp.
1233
1238
.
22.
Kinra
,
V. K.
, and
Anand
,
A.
,
1982
, “
Wave Propagation in a Random Particulate Composite at Long and Short Wave Lengths
,”
Int. J. Solids Struct.
,
18
, pp.
367
380
.
23.
Kinra
,
V. K.
, and
Rousseau
,
C.
, 1987, “Acoustical and Optical Branches of Wave Propagation,” J. Wave Mat. Interact., 2, pp. 141–152.
24.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of the Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
, pp.
143
150
.
25.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
, pp.
315
330
.
26.
Willis
,
J. R.
,
1985
, “
The Nonlocal Influence of Density Variations in a Composite
,”
Int. J. Solids Struct.
,
21
, pp.
805
817
.
You do not currently have access to this content.