The paper considers the problem of a plane-strain fluid-driven fracture propagating in an impermeable elastic solid, under condition of small (relative) solid toughness or high (relative) fracturing fluid viscosity. This condition typically applies in hydraulic fracturing treatments used to stimulate hydrocarbons-bearing rock layers, and in the transport of magma in the lithosphere. We show that for small values of a dimensionless toughness K, the solution outside of the immediate vicinity of the fracture tips is given to O(1) by the zero-toughness solution, which, if extended to the tips, is characterized by an opening varying as the (23) power of the distance from the tip. This near tip behavior of the zero-toughness solution is incompatible with the Linear Elastic Fracture Mechanics (LEFM) tip asymptote characterized by an opening varying as the (12) power of the distance from the tip, for any nonzero toughness. This gives rise to a LEFM boundary layer at the fracture tips where the influence of material toughness is localized. We establish the boundary layer solution and the condition of matching of the latter with the outer zero-toughness solution over a lengthscale intermediate to the boundary layer thickness and the fracture length. This matching condition, expressed as a smallness condition on K, and the corresponding structure of the overall solution ensures that the fracture propagates in the viscosity-dominated regime, i.e., that the solution away from the tip is approximately independent of toughness. The solution involving the next order correction in K to the outer zero-toughness solution yields the range of problem parameters corresponding to the viscosity-dominated regime.

1.
Economides
,
M. J.
, and
Nolte
,
K. G.
, eds., 2000,
Reservoir Stimulation
, 3rd ed.,
Wiley
, Chichester, UK.
2.
Spence
,
D.
, and
Turcotte
,
D.
, 1985, “
Magma-Driven Propagation Crack
,”
J. Geophys. Res.
0148-0227,
90
, pp.
575
580
.
3.
Jeffrey
,
R. G.
, and
Mills
,
K. W.
, 2000, “
Hydraulic Fracturing Applied to Inducing Longwall Coal Mine Goaf Falls
,”
Pacific Rocks 2000: Proceedings of the 4th American Rock Mechanics Symposium
,
J.
Girard
,
M.
Liebman
,
C.
Breeds
, and
T.
Doe
, eds.,
Balkema
, Rotterdam, pp.
423
430
.
4.
Murdoch
,
L. C.
, 2002, “
Mechanical Analysis of Idealized Shallow Hydraulic Fracture
,”
J. Geotech. Geoenviron. Eng.
1090-0241,
128
(
6
), pp.
488
495
.
5.
Khristianovic
,
S.
, and
Zheltov
,
Y.
, 1955, “
Formation of Vertical Fractures by Means of Highly Viscous Fluids
,”
Proc. 4th World Petroleum Congress, Rome
,
II
, pp.
579
586
.
6.
Spence
,
D. A.
, and
Sharp
,
P. W.
, 1985, “
Self-Similar Solution for Elastohydrodynamic Cavity Flow
,”
Proc. R. Soc. London, Ser. A
1364-5021,
400
, pp.
289
313
.
7.
Lister
,
J. R.
, 1990, “
Buoyancy-Driven Fluid Fracture: The Effects of Material Toughness and of Low-Viscosity Precursors
,”
J. Fluid Mech.
0022-1120,
210
, pp.
263
280
.
8.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A. H.-D.
, 1994, “
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
1364-5021,
447
, pp.
39
48
.
9.
Garagash
,
D. I.
, and
Detournay
,
E.
, 2000, “
The Tip Region of a Fluid-Driven Fracture in an Elastic Medium
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
183
192
.
10.
Detournay
,
E.
, and
Garagash
,
D.
, 2003, “
The Tip Region of a Fluid-Driven Fracture in a Permeable Elastic Solid
,”
J. Fluid Mech.
0022-1120,
494
, pp.
1
32
.
11.
Batchelor
,
G. K.
, 1967,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge UK.
12.
Geertsma
,
J.
, and
de Klerk
,
F.
, 1969, “
A Rapid Method of Predicting Width and Extent of Hydraulic Induced Fractures
,”
JPT
0149-2136,
246
, pp.
1571
1581
.
13.
Nilson
,
R.
, 1981, “
Gas Driven Fracture Propagation
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
757
762
.
14.
Nilson
,
R.
, 1988, “
Similarity Solutions for Wedge-Shaped Hydraulic Fracture Driven into a Permeable Medium by a Constant Inlet Pressure
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
12
, pp.
477
495
.
15.
Huang
,
N.
,
Szewczyk
,
A.
, and
Li
,
Y.
, 1990, “
Self-Similar Solution in Problems of Hydraulic Fracturing
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
877
881
.
16.
Adachi
,
J. I.
, and
Detournay
,
E.
, 2002, “
Self-Similar Solution of a Plane-Strain Fracture Driven by a Power-Law Fluid
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
26
, pp.
579
604
.
17.
Garagash
,
D. I.
, 2005, “
Transient Solution for a Plane-Strain Fracture Driven by a Power-Law Fluid
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, (to be published).
18.
Detournay
,
E.
, 1999, “
Fluid and Solid Singularities at the Tip of a Fluid-Driven Fracture
,” in
Proc. IUTAM Symp. on Non-Linear Singularities in Deformation and Flow
,
D.
Durban
and
J.
Pearson
, eds.,
Haifa
,
Kluwer
, Dordrecht, pp.
27
42
.
19.
Detournay
,
E.
, 2004, “
Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks
,”
Int. J. Geomech.
1532-3641,
4
(
1
), pp.
1
11
.
20.
Adachi
,
J. I.
, 2001, “
Fluid-Driven Fracture in Permeable Rock
,” PhD thesis, University of Minnesota.
21.
Garagash
,
D. I.
, 2000, “
Hydraulic Fracture Propagation in Elastic Rock With Large Toughness
,”
Pacific Rocks 2000—Proc. 4th North American Rock Mechanics Symp.
,
J.
Girard
,
M.
Liebman
,
C.
Breeds
, and
T.
Doe
, eds.,,
Balkema
, Rotterdam, pp.
221
228
.
22.
Garagash
,
D. I.
, 2004, “
Plane Strain Propagation of a Hydraulic Fracture During Injection and Shut-In: Asymptotics of Large Toughness
,”
Eng. Fract. Mech.
0013-7944, (to be published).
23.
Carbonell
,
R.
,
Desroches
,
J.
, and
Detournay
,
E.
, 1999, “
A Comparison Between a Semi-Analytical and a Numerical Solution of a Two-Dimensional Hydraulic Fracture
,”
Int. J. Solids Struct.
0020-7683,
36
(
31–32
), pp.
4869
4888
.
24.
Rice
,
J. R.
, 1968, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture, an Advanced Treatise
,
H.
Liebowitz
, ed.,
Academic
, New York, Chap. 3, pp.
191
311
.
25.
Garagash
,
D. I.
, 2005, “
Propagation of a Plane-Strain Fluid-Driven Fracture With a Fluid Lag: Early-Time Solution
,”
Int. J. Solids Struct.
0020-7683, (to be published).
26.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds., 1965,
Handbook of Mathematical Functions
,
Dover
, New York.
27.
Kevorkian
,
J.
, and
Cole
,
J.
, 1996,
Multiple Scale and Singular Perturbation Methods
,
Springer
, New York, NY.
28.
Garagash
,
D. I.
, 2004, “
Relevance of Fluid Lag, Toughness, and Leak-Off for Hydraulic Fracture Propagation
,” unpublished.
29.
Savitski
,
A.
, and
Detournay
,
E.
, 2002, “
Propagation of a Fluid-Driven Penny-Shaped Fracture in an Impermeable Rock: Asymptotic Solutions
,”
Int. J. Solids Struct.
0020-7683,
39
(
26
), pp.
6311
6337
.
You do not currently have access to this content.