In this work, transient free surface flows of a viscous incompressible fluid are numerically solved through parallel computation. Transient free surface flows are boundary-value problems of the moving type that involve geometrical nonlinearities. In contrast to more conventional computational fluid dynamics problems, the computational flow domain is partially bounded by a free surface which is not known a priori, since its shape must be computed as part of the solution. In steady flow the free surface is obtained by an iterative process, but when the free surface evolves with time the problem is more difficult as it generates large distortions in the computational flow domain. The incompressible Navier-Stokes numerical solver is based on the finite element method with equal order elements for pressure and velocity (linear elements), and it uses a streamline upwind/Petrov-Galerkin (SUPG) scheme (Hughes, T. J. R., and Brooks, A. N., 1979, “A Multidimensional Upwind Scheme With no Crosswind Diffusion,” in Finite Element Methods for Convection Dominated Flows, ASME ed., 34. AMD, New York, pp. 19–35, and Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32, pp. 199–259) combined with a Pressure-Stabilizing/Petrov-Galerkin (PSPG) one (Tezduyar, T. E., 1992, “Stablized Finite Element Formulations for Incompressible Flow Computations,” Adv. Appl. Mech., 28, pp. 1–44, and Tezduyar, T. E., Mittal, S., Ray, S. E., and Shih, R., 1992, “Incompressible Flow Computations With Stabilized Bilinear and Linear Equal Order Interpolation Velocity-Pressure Elements,” Comput. Methods Appl. Mech. Eng., 95, pp. 221–242). At each time step, the fluid equations are solved with constant pressure and null viscous traction conditions at the free surface and the velocities obtained in this way are used for updating the positions of the surface nodes. Then, a pseudo elastic problem is solved in the fluid domain in order to relocate the interior nodes so as to keep mesh distortion controlled. This has been implemented in the PETSc-FEM code (PETSc-FEM: a general purpose, parallel, multi-physics FEM program. GNU general public license (GPL), http://www.cimec.org.ar/petscfem) by running two parallel instances of the code and exchanging information between them. Some numerical examples are presented.

1.
Hughes
,
T. J. R.
, and
Brooks
,
A. N.
, 1979, “
A Multidimensional Upwind Scheme With No Crosswind Diffusion
,”
Finite Element Methods for Convection Dominated Flows
, ASME, ed.,
34
.
AMD
, New York, pp.
19
35
.
2.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
3.
Tezduyar
,
T. E.
, 1992, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
0065-2156,
28
, pp.
1
44
.
4.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
, 1992, “
Incompressible Flow Computations With Stabilized Bilinear and Linear Equal Order Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
95
, pp.
221
242
.
5.
Housner
,
G. W.
, 1957, “
Dynamic Pressures on Accelerated Fluid Containers
,”
Bull. Seismol. Soc. Am.
0037-1106,
47
, pp.
15
35
.
6.
Storti
,
M. A.
, and
D’Elía
,
J.
, 2005, “
Added Mass of an Oscillating Hemisphere at Very-Low and Very-High Frequencies
,”
J. Fluids Eng.
0098-2202,
126
(
6
), pp.
1048
1053
.
7.
Biswal
,
K C.
.
,
Bhattacharyya
,
S. K.
, and
Sinha
,
P. K.
, 2004, “
Dynamic Response Analysis of Liquid-Filled Cylindrical Tank With Annular Baffle
,”
J. Sound Vib.
0022-460X,
274
(
1
), pp.
13
97
.
8.
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Rao
,
M. M.
, and
Smith
,
R. W.
, 1996,
Computational Fluid Dynamics with Moving Boundaries
,
Taylor and Francis
, London.
9.
Aliabadi
,
S.
, and
Tezduyar
,
T. E.
, 2000, “
Stabilized-Finite-Element/Interface-Capturing Technique for Parallel Computation of Unsteady Flows with Interfaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
243
261
.
10.
Perot
,
B.
, and
Nallapati
,
R.
, 2003, “
A Moving Unstructured Staggered Mesh Method for the Simulation of Incompressible Free-Surface Flows
,”
J. Comput. Phys.
0021-9991,
184
(
1
), pp.
192
214
.
11.
Nickell
,
R. E.
,
Tanner
,
R. I.
, and
Caswell
,
B.
, 1974, “
The Solution of Viscous Incompressible Jet and Free-Surface Flows Using Finite Element Method
,”
J. Fluid Mech.
0022-1120,
65
, pp.
189
206
.
12.
Silliman
,
W. J.
, and
Scriven
,
L. E.
, 1980, “
Separating Flow Near a Static Contact Line: Slip at the Wall and Shape of a Free Surface
,”
J. Comput. Phys.
0021-9991,
34
(
3
), pp.
287
313
.
13.
Ruschak
,
K. J.
, 1980, “
A Method for Incorporating Free Boundaries with Surface Tension in Finite Element Fluid Flow Simulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
(
5
), pp.
639
648
.
14.
Kawahara
,
M.
, and
Miwa
,
T.
, 1984, “
Finite Element Analysis of Wave Motion
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
(
7
), pp.
1193
1210
.
15.
Bach
,
P.
, and
Hassager
,
O.
, 1985, “
An Algorithm For the Use of the Lagrangian Specification in Newtonian Fluid Mechanics and Applications to Free Surface Flows
,”
J. Fluid Mech.
0022-1120,
152
, pp.
173
190
.
16.
Ramaswamy
,
B.
, and
Kawahara
,
M.
, 1987, “
Lagrangian Finite Element Analysis Applied to Viscous Free Surface Fluid Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
7
(
9
), pp.
953
984
.
17.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
, 1981, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
29
, pp.
329
349
.
18.
Sung
,
J.
,
Choi
,
H. G.
, and
Yoo
,
J. Y.
, 2000, “
Time-Accurate Computation of Unsteady Free Surface Flows Using an ALE-Segregated Equal-Order FEM
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1425
1440
.
19.
Huang
,
Y.
, and
Sclavounos
,
P. D.
, 1998, “
Nonlinear Ship Motions
,”
J. Ship Res.
0022-4502,
42
(
2
), pp.
120
130
.
20.
York
,
A. R.
,
Sulsky
,
D.
, and
Schreyer
,
H. L.
, 2000, “
Fluid-Membrane Interaction Based on the Material Point Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
(
6
), pp.
901
924
.
21.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
, 1993, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
0018-9162,
26
, pp.
27
36
.
22.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Johnson
,
A. A.
, 1992, “
Computation of Unsteady Incompressible Flows With the Stabilized Finite Element Methods-Space-Time Formulations, Iterative Strategies and Massively Parallel Implementations
,”
New Methods in Transient Analysis
, PVP-VOL.
246/AMD-143
,
ASME
, New York, pp.
7
24
.
23.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1994, “
Mesh Update Strategies in Parallel Finite Element Computations of Flow Problems With Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
119
, pp.
73
94
.
24.
D’Elía
,
J.
,
Storti
,
M. A.
,
Oñate
,
E.
, and
Idelsohn
,
S. R.
, 2002, “
A Lagrangian Panel Method in the Time Domain for Moving Free-Surface Potential Flows
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
16
(
4
), pp.
263
275
.
25.
D’Elía
,
J.
,
Storti
,
M. A.
, and
Idelsohn
,
S. R.
, 2001, “
A Surface Remeshing for Floating-Like Bodies With a Moving Free Surface
,”
Mecánica Computacional
, Vol.
20
, XII Congress on Numerical Methods and Their Applications-ENIEF 2001, pp.
462
467
.
26.
Behr
,
M.
, and
Abraham
,
F.
, 2002, “
Free-Surface Flow Simulations in the Presence of Inclined walls
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
5467
5483
.
27.
Güler
,
I.
,
Behr
,
M.
, and
Tezduyar
,
T.
, 1999, “
Parallel Finite Element Computation of Free-Surface Flows
,”
Comput. Mech.
0178-7675,
23
(
2
), pp.
117
123
.
28.
Sonzogni
,
V. E.
,
Yommi
,
A. M.
,
Nigro
,
N. M.
, and
Storti
,
M. A.
, 2002, “
A Parallel Finite Element Program on a Beowulf Cluster
,”
Adv. Eng. Software
0965-9978,
33
, pp.
427
443
.
29.
Paz
,
R. R.
, and
Storti
,
M. A.
, 2005, “
An Interface Strip Preconditioner for Domain Decomposition Methods. Application to Hidrology
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
13
), pp.
1873
1894
.
30.
Paz
,
R. R.
,
Nigro
,
N. M.
, and
Storti
,
M. A.
, 2006, “
On the Efficiency and Quality of Numerical Solutions in CFD Problems Using the Interface Strip Preconditioner for Domain Decomposition Methods
,” Int. J. Numer. Methods Fluids (in press).
31.
Braza
,
M.
,
Chassaing
,
P.
, and
Minh
,
H.
, 1986, “
Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
165
, pp.
79
130
.
32.
Tezduyar
,
T. E.
, and
Shih
,
R.
, 1991, “
Numerical Experiments on Downstream Boundary of Flow Past Cylinder
,”
J. Eng. Mech.
0733-9399,
117
, pp.
854
871
.
33.
Behr
,
M.
,
Liou
,
J.
,
Shih
,
R.
, and
Tezduyar
,
T. E.
, 1991, “
Vorticity-Stream Function Formulation of Unsteady Incompressible Flow Past a Cylinder: Sensitivity of the Computed Flow Field to the Location of the Outflow Boundary
,”
Int. J. Numer. Methods Fluids
0271-2091,
12
, pp.
323
342
.
34.
Cantwell
,
B. J.
, and
Coles
,
D.
, 1983, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
136
, pp.
321
374
.
35.
Roshko
,
A.
, 1961, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
10
, pp.
345
356
.
36.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
477
539
.
37.
Gushchin
,
V.
,
Kostomarov
,
A.
,
Matyushin
,
P.
, and
Pavlyukova
,
E.
, 2002, “
Direct Numerical Simulation of the Transitional Separated Fluid Flows Around a Sphere and a Circular Cylinder
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
90
, pp.
341
358
.
38.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
(
8
), pp.
1841
1865
.
39.
Norberg
,
C.
, 2001, “
Flow Around a Circular Cylinder: Aspects of Fluctuating Lift
,”
J. Fluids Struct.
0889-9746,
15
, pp.
459
469
.
40.
Rabier
,
S.
, and
Medale
,
M.
, 2003, “
Computation of Free Surface Flows with a Projection FEM in a Moving Mesh Framework
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4703
4721
.
41.
Prosperetti
,
A.
, 1981, “
Motion of Two Superposed Viscous Fluids
,”
Phys. Fluids
0031-9171,
24
(
7
), pp.
1217
1223
.
42.
Papaspyrou
,
S.
,
Karamanos
,
S. A.
, and
Valougeorgis
,
D.
, 2004, “
Response of Half Full Horizontal Cylinders Under Transverse Excitation
,”
J. Fluids Struct.
0889-9746,
19
(
7
), pp.
985
1003
.
43.
Moiseev
,
N. N.
, and
Petrov
,
A. A.
, 1966, “
The Calculation of Free Oscillations of a Liquid in Motionless Container
,”
Advances in Applied Mechanics
,
8
.
Academic
, New York, pp.
91
155
.
44.
PETSc-FEM: A general purpose, parallel, multi-physics FEM program. GNU General Public License (GPL), http://www.cimec.org.ar/petscfemhttp://www.cimec.org.ar/petscfem
46.
Balay
,
S.
,
Gropp
,
W.
,
Mclnnes
,
L. C.
, and
Smith
,
B.
, 1997,
Petsc 2.0 Users Manual.
Tech. Rep. No. UC-405,
Argonne National Laboratory
.
47.
D’Elía
,
J.
,
Storti
,
M. A.
, and
Idelsohn
,
S.
, 2000, “
A Panel-Fourier Method for Free Surface Flows
,”
J. Fluids Eng.
0098-2202,
122
(
2
), pp.
309
317
.
48.
Linux. The Linux Documentation Project, http://www.gnu.orghttp://www.gnu.org
You do not currently have access to this content.