In this work the geometrical method for the assessment of discontinuous bifurcation conditions is extended to encompass gradient-dependent plasticity. To this end, the gradient-dependent localization condition is cast in the form of an elliptical envelope condition in the coordinates of Mohr. The results in this work demonstrate the capability of thermodynamically consistent gradient-dependent elastoplastic model formulations to suppress the localized failure modes of the classical plasticity that take place when the hardening/softening modulus H¯ equals the critical value for localization H¯c, provided the characteristic length l remains positive.

1.
Nadai
,
A.
, 1931,
Plasticity
,
McGraw-Hill
,
New York
.
2.
Thomas
,
T.
, 1961,
Plastic Flow and Fracture in Solids
,
Academic
,
London
.
3.
Hill
,
R.
, 1962,
J. Mech. Phys. Solids
0022-5096,
10
, p.
1
.
4.
Rudnicki
,
J.
, and
Rice
,
J.
, 1975,
J. Engrg. Mech. Div.
0044-7951,
23
, p.
371
.
5.
Zbib
,
H.
, and
Aifantis
,
E.
, 2002,
Acta Mech.
0001-5970,
92
, p.
209
.
6.
Fleck
,
N.
, and
Hutchinson
,
J.
, 1993,
J. Mech. Phys. Solids
0022-5096,
41
, p.
1825
.
7.
Zbib
,
H.
, 1994,
ASME Mater. Instabil.
,
92
, p.
19
.
8.
Sluys
,
L.
,
de Borst
,
R.
, and
Muhlhaus
,
M.
, 1993,
Int. J. Solids Struct.
0020-7683,
30
, p.
1153
.
9.
de Borst
,
R.
,
Pamin
,
J.
, and
Sluys
,
L.
, 1995,
Continuum Models for Materials With Micro-Structure
,
H. B.
Muhlhaus
, ed.,
Wiley
,
New York
, p.
159
.
10.
de Borst
,
R.
,
Pamin
,
J.
, and
Sluys
,
L.
, 1995,
Computational Plasticity, Fundamentals and Applications
,
D. R. J.
Owen
,
E.
Onate
, and
E.
Hinton
, eds.,
Pineridge
,
Swansea
, p.
509
.
11.
Pamin
,
J.
, 1994, Ph.D. thesis, TU-Delft, The Netherlands.
12.
Valanis
,
K. C.
, 1968, “
Unified Theory of Thermomechanical Behavior of Viscoplastic Materials
,”
Mechanical Behavior of Materials Under Dynamic Loads Symposium
,
Springer
,
New York
, pp.
343
364
.
13.
Dillon
,
O.
, and
Kratochvil
,
J.
, 1970,
Int. J. Solids Struct.
0020-7683,
6
, p.
1513
.
14.
Valanis
,
K.
, 1998,
Acta Mech.
0001-5970,
127
, p.
1
.
15.
Svedberg
,
T.
, and
Runesson
,
K.
, 1997,
Int. J. Plast.
0749-6419,
13
, p.
669
.
16.
Fleck
,
N.
, and
Hutchinson
,
J.
, 1998,
Material Instabilities in Solids
,
R.
de Borst
and
E.
van der Giessen
eds.,
Wiley
,
New York
, p.
507
.
17.
Fleck
,
N.
, and
Hutchinson
,
J.
, 2001,
J. Mech. Phys. Solids
0022-5096,
49
, p.
2245
.
18.
Pijaudier-Cabot
,
G.
, and
Benallal
,
A.
, 1993,
Int. J. Solids Struct.
0020-7683,
30
, p.
1761
.
19.
Liebe
,
T.
, and
Willam
,
K.
, 2001,
ASCE JEM
,
127
(
6
), p.
616
.
20.
Ottosen
,
N.
, and
Runesson
,
K.
, 1991,
Int. J. Solids Struct.
0020-7683,
27
, p.
401
.
21.
Willam
,
K.
, and
Etse
,
G.
, 1990, “
Failure Assessment of the Extended Leon Model for Plain Concrete
,”
Proceedings of Sci-C
, Second International Conference held at Zell am See, Austria,
N.
Bicanic
and
H.
Mang
, eds.,
Pineridge Press
,
Swansea
, pp.
851
870
.
22.
Benallal
,
A.
, 1992,
Arch. Mech.
0373-2029,
44
, p.
15
.
You do not currently have access to this content.