Elasticity solutions are developed for finite multilayered domains weakened by aligned cracks that are in a state of generalized plane deformation under two types of end constraints. Multilayered domains consist of an arbitrary number of finite-length and finite-height isotropic, orthotropic or monoclinic layers typical of differently oriented, unidirectionally reinforced laminas arranged in any sequence in the plane in which the analysis is conducted. The solution methodology admits any number of arbitrarily distributed interacting or noninteracting cracks parallel to the horizontal bounding surfaces at specified elevations or interfaces. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to a system of coupled singular integral equations of the Cauchy type with kernels formulated in terms of the unknown displacement discontinuities. Solutions to these integral equations are obtained by representing the unknown interfacial displacement discontinuities in terms of Jacobi or Chebyshev polynomials with unknown coefficients. The application of orthogonality properties of these polynomials produces a system of algebraic equations that determines the unknown coefficients. Stress intensity factors and energy release rates are derived from dominant parts of the singular integral equations. In Part I of this paper we outline the analytical development of this technique. In Part II we verify this solution and present new fundamental results relevant to the existing and emerging technologies.

1.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
, Groningen, The Netherlands.
2.
Muskhelishvili
,
N. I.
, 1953,
Singular Integral Equations
,
Noordhoff
, Groningen, The Netherlands.
3.
Sneddon
,
I. N.
, 1951,
Fourier Transforms
,
McGraw-Hill
, New York.
4.
Sneddon
,
I. N.
, 1961,
Fourier Series
,
Routledge and Paul
, London.
5.
Westergaard
,
H. M.
, 1939, “
Bearing Pressures and Cracks
,”
J. Appl. Mech.
0021-8936,
66
, pp.
A49
A53
.
6.
Koiter
,
W. T.
, 1959, “
An Infinite Row of Collinear Cracks in an Infinite Elastic Sheet
,”
Ing.-Arch.
0020-1154,
28
, pp.
168
173
.
7.
Sneddon
,
I. N.
, and
Srivastava
,
K. N.
, 1965, “
The Stress in the Vicinity of an Infinite Row of Collinear Cracks in an Elastic Body
,”
Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci.
0080-4541,
67
, pp.
39
49
.
8.
Lowengrub
,
M.
, 1966, “
A Two-dimensional Crack Problem
,”
Int. J. Eng. Sci.
0020-7225.
4
, pp.
289
299
.
9.
Sneddon
,
I. N.
, and
Lowengrub
,
M.
, 1969,
Crack Problems in the Classical Theory of Elasticity
,
Wiley
, New York.
10.
Erdogan
,
F.
, 1962, “
On the Stress Distribution in Plates with Collinear Cuts Under Arbitrary Loads
,”
Proc. of the Fourth U.S. National Congress. of Appl. Mech.
, Vol.
1
, pp.
547
553
.
11.
Rice
,
J. R.
, and
Sih
,
G. C.
, 1965, “
Plane Problems of Cracks in Dissimilar Media
,”
J. Appl. Mech.
0021-8936,
32
, pp.
418
423
.
12.
Delameter
,
W. R.
,
Herrmann
,
G.
, and
Barnett
,
D. M.
, 1975, “
Weakening of an Elastic Solid by a Rectangular Array of Cracks
,”
J. Appl. Mech.
0021-8936,
42
, pp.
74
80
;
Errata: 1977,
J. Appl. Mech.
0021-8936,
44
, p.
190
.
13.
Isida
,
M.
, 1976, “
Analysis of Stress Intensity Factors for Plates Containing Randomly Distributed Cracks
,”
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
35
, pp.
1815
1822
.
14.
Chen
,
Y. Z.
, 1984, “
General Case of Multiple Crack Problems in an Infinite Plate
,”
Eng. Fract. Mech.
0013-7944,
20
, pp.
295
297
.
15.
Horii
,
H.
, and
Nemat-Nasser
,
S.
, 1985, “
Elastic Fields of Interacting Inhomogeneities
,”
Int. J. Solids Struct.
0020-7683,
21
, pp.
731
745
.
16.
Kachanov
,
M.
, 1985, “
A Simple Technique of Stress Analysis in Elastic Solids with Many Cracks
,”
Int. J. Fract.
0376-9429,
28
, pp.
R11
R19
.
17.
Kachanov
,
M.
, 1987, “
Elastic Solids with Many Cracks: A Simple Method of Analysis
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
23
43
.
18.
Mauge
,
C.
, and
Kachanov
,
M.
, 1994, “
Anisotropic Materials with Interacting Arbitrarily Oriented Cracks—Stress Intensity Factors and Crack-Microcrack Interactions
,”
Int. J. Fract.
0376-9429,
65
, pp.
115
139
.
19.
Du
,
Y. J.
, and
Aydin
,
A.
, 1991, “
Interaction of Multiple Cracks and Formulation of Echelon Crack Arrays
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
15
, pp.
205
218
.
20.
Binienda
,
W. K.
, 1994, “
Stress Intensity Factors for Fully Interacting Cracks in a Multicrack Solid
,”
J. Offshore Mech. Arct. Eng.
0892-7219,
116
, pp.
56
63
.
21.
Shbeeb
,
N. I.
,
Binienda
,
W. K.
, and
Kreider
,
K. I.
, 1999, “
Analysis of the Driving Forces for Multiple Cracks in an Infinite Nonhomogeneous Plate, Part I: Theoretical Analysis & Part II: Numerical Solutions
,”
J. Appl. Mech.
0021-8936,
66
, pp.
492
506
.
22.
Erdogan
,
F.
, and
Gupta
,
G. D.
, 1971, “
The Stress Analysis of Multi-layered Composites with a Flaw
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
39
61
.
23.
Erdogan
,
F.
, 1971, “
Layered Composites with an Interface Flaw
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
1089
1107
.
24.
Chatterjee
,
S. N.
,
Pindera
,
M-J.
,
Pipes
,
R. B.
, and
Dick
,
B.
, 1982, “
Composite Defect Significance
,” MSC TFR 1312/1108, NADC Report No. 81034-60, Spring House, PA.
25.
Chatterjee
,
S. N.
, 1987, “
Three- and Two-Dimensional Stress Fields Near Delaminations in Laminated Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1535
1549
.
26.
Pindera
,
M-J.
, 1991, “
Local/Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Composites Eng.
0961-9526,
1
, pp.
69
83
.
27.
Choi
,
H. J.
, and
Thangjitham
,
S.
, 1994, “
The Interlaminar Crack-tip Response in a Fiber-Reinforced Composite Laminate
,”
Int. J. Fract.
0376-9429,
66
, pp.
121
138
.
28.
Isida
,
M.
, 1971, “
Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions
,”
Int. J. Fract. Mech.
0020-7268,
7
, pp.
301
316
.
29.
Chatterjee
,
S. N.
, 1979, “
On Interlaminar Defects in Laminated Composites
,”
Modern Developments in Composite Materials and Structures
, edited by
J. R.
Vinson
,
ASME
, New York, pp.
1
15
.
30.
Chen
,
Y. Z.
, 1988, “
Multiple Crack Problems for Finite Plate with Arbitrary Contour Configuration
,”
Eng. Fract. Mech.
0013-7944,
31
, pp.
289
295
.
31.
Zhan
,
S.
,
Wang
,
T.
, and
Han
,
X.
, 1999, “
Analysis of Two-dimensional Finite Solids with Microcracks
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
3735
3753
.
32.
Seelig
,
T.
,
Rafiee
,
S.
, and
Gross
,
G.
, 2000, “
A Simple Method for the Investigation of Elastic Bodies of Finite Size Containing Many Cracks
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
1459
1472
.
33.
Erdogan
,
F.
,
Gupta
,
G. D.
, and
Cook
,
T. S.
, 1973, “
Numerical Solution of Singular Integral Equations
,”
Methods of Analysis and Solutions of Crack Problems
, edited by
G. C.
Sih
,
Netherlands
, Noordhoff, Leyden, pp.
368
425
.
34.
Kim
,
J-H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
J. Appl. Mech.
0021-8936,
72
, pp.
351
364
.
35.
Lekhnitskii
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Body
,
Mir
, Moscow (English translation).
36.
Bufler
,
H.
, 1971, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
0374-3535,
1
, pp.
125
143
.
37.
Rowe
,
R. K.
, and
Booker
,
J. R.
, 1982, “
Finite Layer Analysis of Nonhomoge-neous Soils
,”
J. Eng. Mech.
0733-9399,
108
, pp.
115
132
.
38.
Pindera
,
M-J.
, and
Lane
,
M. S.
, 1993, “
Frictionless Contact of Layered Half Planes: Part I - Analysis
,”
J. Appl. Mech.
0021-8936,
60
, pp.
633
639
.
39.
Urquhart
,
E. E.
, and
Pindera
,
M-J.
, 1994, “
Incipient Separation Between a Frictionless Flat Punch and an Anisotropic Multilayered Half Plane
,”
Int. J. Solids Struct.
0020-7683,
31
, pp.
2445
2461
.
40.
Bansal
,
Y.
, and
Pindera
,
M-J.
, 2003, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for FGMs
,”
J. Therm. Stresses
0149-5739,
26
, pp.
1055
1092
.
41.
Bansal
,
Y.
, and
Pindera
,
M-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
J. Appl. Mech.
0021-8936,
72
, pp.
177
195
.
42.
Wang
,
S. S.
, and
Choi
,
I.
, 1983, “
The Interface Crack Between Dissimilar Anisotropic Composite Materials
,”
J. Appl. Mech.
0021-8936,
50
, pp.
169
178
.
43.
Wang
,
S. S.
, and
Choi
,
I.
, 1983, “
The Interface Crack Behavior in Dissimilar Anisotropic Composites Under Mixed-Mode Loading
,”
J. Appl. Mech.
0021-8936,
50
, pp.
179
183
.
44.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity (Theory and Applications)
,
Oxford University Press
, Oxford.
45.
Gradsheteyn
,
I. S.
, and
Ryzhik
,
I. M.
, 2000,
Table of Integrals, Series and Products
, 6th ed.,
Academic
, New York.
You do not currently have access to this content.