A method for analyzing problems involving defects in lattices is presented. Special attention is paid to problems in which the lattice containing the defect is infinite, and the response in a finite zone adjacent to the defect is nonlinear. It is shown that lattice Green’s functions allow one to reduce such problems to algebraic problems whose size is comparable to that of the nonlinear zone. The proposed method is similar to a hybrid finite-boundary element method in which the interior nonlinear region is treated with a finite element method and the exterior linear region is treated with a boundary element method. Method details are explained using an anti-plane deformation model problem involving a cylindrical vacancy.

1.
Martinsson
,
P. G.
, and
Rodin
,
G. J.
, 2003, “
Boundary Algebraic Equations for Lattice Problems
,”
IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Proceedings of the IUTAM Symposium
,
Liverpool, UK
, July 8–11,
A. B.
Movchan
, ed., pp.
191
198
.
2.
Masudajindo
,
K.
,
Tewary
,
V. K.
, and
Thomson
,
R.
, 1991, “
Theoretical Study of the Fracture of Brittle Materials: Atomistic Calculations Materials
,”
Mater. Sci. Eng., A
0921-5093,
146
(
1–2
), pp.
273
289
.
3.
Masudajindo
,
K.
,
Tewary
,
V. K.
, and
Thomson
,
R.
, 1991, “
Atomic Theory of Fracture of Brittle Materials: Application to Covalent Semiconductors
,”
J. Mater. Res.
0884-2914
6
(
7
), pp.
1553
1566
.
4.
Thomson
,
R.
,
Zhou
,
S. J.
,
Carlsson
,
A. E.
, and
Tewary
,
V. K.
, 1992, “
Lattice Imperfections Studied by Use of Lattice Green-Functions
,”
Phys. Rev. B
0163-1829,
46
(
17
), pp.
10613
10622
.
5.
Zhou
,
S. J.
,
Carlsson
,
A. E.
, and
Thomson
,
R.
, 1993, “
Dislocation Nucleation and Crack Stability—Lattice Greens-Function Treatment of Cracks in a Model Hexagonal Lattice
,”
Phys. Rev. B
0163-1829,
47
(
13
), pp.
7710
7719
.
6.
Zhou
,
S. J.
, and
Curtin
,
W. A.
, 1995, “
Failure of Fiber Composites: A Lattice Green-Function Model
,”
Acta Metall. Mater.
0956-7151,
43
(
8
), pp.
3093
3104
.
7.
Schiotz
,
J.
, and
Carlsson
,
A. E.
, 1997, “
Calculation of Elastic Green’s Functions for Lattices with Cavities
,”
Phys. Rev. B
0163-1829,
56
(
5
), pp.
2292
2294
.
8.
Rao
,
S.
,
Hernandez
,
G.
,
Simmons
,
J. P.
,
Parthasarathy
,
T. A.
, and
Woodward
,
C.
, 1998, “
Green’s Function Boundary Conditions in Two-Dimensional and Three-Dimensional Atomistic Simulations of Dislocations
,”
Philos. Mag. A
0141-8610,
77
(
1
), pp.
231
256
.
9.
Masuda-Jindo
,
K.
,
Menon
,
M.
, and
Van Hung
,
V.
, 2001, “
Atomistic Study of Fracture of Nanoscale Materials by Molecular Dynamics and Lattice Green’s Function Methods
,”
J. Phys. IV
1155-4339,
11
(
PR5
), pp.
11
18
.
10.
Wang
,
S.
, 2002, “
Lattice Theory for Structure of Dislocations in a Two-Dimensional Triangular Crystal
,”
Phys. Rev. B
0163-1829,
65
(
9
), p.
094111
.
11.
Saito
,
Y.
, 2004, “
Elastic Lattice Green’s Function in Three Dimensions
,”
J. Phys. Soc. Jpn.
0031-9015,
73
, pp.
1816
1826
.
12.
Saltzer
,
C.
, 1958, “
Discrete Potential Theory for Two-Dimensional Laplace and Poisson Difference Equations
,” Paper No. NACA TN 4086.
13.
Greengard
,
L.
, and
Rokhlin
,
V.
, 2003, “
A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions
,”
Acta Numerica
0962-4929,
6
, pp.
229
269
.
14.
Nishimura
,
N.
, 2002, “
Fast Multipole Accelerated Boundary Integral Equation Methods
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
299
324
.
15.
Martinsson
,
P. G.
, and
Rodin
,
G. J.
, 2003, “
Asymptotic Expansions of Lattice Green’s Functions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
(
2027
), pp.
2609
2622
.
16.
Necas
,
J.
, and
Hlavacek
,
J.
, 1981,
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction
,
Elsevier
/
North Holland, Amsterdam, Netherlands
.
17.
Bonnet
,
M.
, 1999,
Boundary Integral Equation Methods for Solids and Fluids
,
Wiley
,
New York
.
18.
Duffin
,
R. J.
, and
Shelly
,
E. P.
, 1958, “
Difference Equations of Polyharmonic Type
,”
Duke Math. J.
0012-7094,
25
, pp.
209
238
.
19.
Frenkel
,
J.
, and
Kontorova
,
T.
, 1938, “
On the Theory of Plastic Deformation and Twinning
,”
J. Exp. Theor. Phys.
1063-7761,
8
, pp.
89
91
.
20.
Peierls
,
R.
, 1940, “
The Size of a Dislocation
,”
Proc. Phys. Soc. London
0370-1328,
52
, pp.
34
37
.
21.
Nabarro
,
F. R. N.
, 1947, “
Dislocations in a Simple Cubic Lattice
,”
Proc. Phys. Soc. London
0370-1328,
59
, pp.
256
272
.
22.
Haq
,
S.
,
Movchan
,
A. B.
, and
Rodin
,
G. J.
, 2006, “
Analysis of Lattices With Non-Linear Interphases
,”
Acta Mech. Sin.
0459-1879,
22
, pp.
323
330
.
You do not currently have access to this content.