We consider the contact problem for a particular class of compressible hyperelastic materials of harmonic type undergoing finite plane deformations. Using complex variable techniques, we derive subsidiary results concerning a half-plane problem corresponding to this class of materials. Using these results, we solve the contact problem for a harmonic material in the case of a uniform load acting on a finite area. Finally, we show how we can then deduce the corresponding results for the case of a point load.

1.
John
,
F.
, 1960, “
Plane Strain Problems for a Perfectly Elastic Material of Harmonic Shape
,”
Commun. Pure Appl. Math.
0010-3640
XIII
, pp.
239
290
.
2.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1975, “
On the Singularity Induced by Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics
,”
Int. J. Solids Struct.
0020-7683,
11
, pp.
1173
1201
.
3.
Varley
,
E.
, and
Cumberbatch
,
E.
, 1980, “
Finite Deformation of Elastic Material Surrounding Cylindrical Holes
,”
J. Elast.
0374-3535,
10
, pp.
341
405
.
4.
Abeyaratne
,
R.
, and
Horgan
,
C. O.
, 1984, “
The Pressurized Hollow Sphere Problem in Finite Elastostatics for a Class of Compressible Materials
,”
Int. J. Solids Struct.
0020-7683,
20
, pp.
715
723
.
5.
Li
,
X.
, and
Steigmann
,
D. J.
, 1993, “
Finite Plane Twist of an Annular Membrane
,”
Q. J. Mech. Appl. Math.
0033-5614,
46
, pp.
601
625
.
6.
Horgan
,
C. O.
, 1995, “
On Axisymmetric Solutions for Compressible Nonlinearly Elastic Solids
,”
ZAMP
0044-2275,
46
, pp.
107
125
.
7.
Aguiar
,
A.
, and
Fosdick
,
R.
, 2001, “
Self-Interaction in Elasticity
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4797
4823
.
8.
England
,
A. E.
, 1971,
Complex Variable Methods in Elasticity
,
Wiley Interscience
,
London, UK
.
9.
Ru
,
C. Q.
, 2002, “
On Complex-Variable Formulation for Finite Plane Elastostatics of Harmonic Materials
,”
Acta Mech.
0001-5970,
156
, pp.
219
234
.
10.
Ru
,
C. Q.
,
Schiavone
,
P.
,
Sudak
,
L. J.
, and
Mioduchowski
,
A.
, 2005, “
Uniformity of Stresses Inside an Elliptic Inclusion in Finite Plane Elastostatics
,”
Int. J. Non-Linear Mech.
0020-7462,
40
(
2–3
), pp.
281
287
.
11.
Wang
,
G. F.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
, 2005, “
Harmonic Shapes in Finite Elasticity Under Non-Uniform Loading
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
691
694
.
12.
Wang
,
G. F.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
, 2005, “
Surface Instability of a Semi-Infinite Harmonic Solid Under van der Waals Attraction
,”
Acta Mech.
0001-5970,
180
(
1–4
), pp.
1
10
.
13.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
London, UK
.
You do not currently have access to this content.