We consider the contact problem for a particular class of compressible hyperelastic materials of harmonic type undergoing finite plane deformations. Using complex variable techniques, we derive subsidiary results concerning a half-plane problem corresponding to this class of materials. Using these results, we solve the contact problem for a harmonic material in the case of a uniform load acting on a finite area. Finally, we show how we can then deduce the corresponding results for the case of a point load.
Issue Section:
Technical Briefs
1.
John
, F.
, 1960, “Plane Strain Problems for a Perfectly Elastic Material of Harmonic Shape
,” Commun. Pure Appl. Math.
0010-3640 XIII
, pp. 239
–290
.2.
Knowles
, J. K.
, and Sternberg
, E.
, 1975, “On the Singularity Induced by Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics
,” Int. J. Solids Struct.
0020-7683, 11
, pp. 1173
–1201
.3.
Varley
, E.
, and Cumberbatch
, E.
, 1980, “Finite Deformation of Elastic Material Surrounding Cylindrical Holes
,” J. Elast.
0374-3535, 10
, pp. 341
–405
.4.
Abeyaratne
, R.
, and Horgan
, C. O.
, 1984, “The Pressurized Hollow Sphere Problem in Finite Elastostatics for a Class of Compressible Materials
,” Int. J. Solids Struct.
0020-7683, 20
, pp. 715
–723
.5.
Li
, X.
, and Steigmann
, D. J.
, 1993, “Finite Plane Twist of an Annular Membrane
,” Q. J. Mech. Appl. Math.
0033-5614, 46
, pp. 601
–625
.6.
Horgan
, C. O.
, 1995, “On Axisymmetric Solutions for Compressible Nonlinearly Elastic Solids
,” ZAMP
0044-2275, 46
, pp. 107
–125
.7.
Aguiar
, A.
, and Fosdick
, R.
, 2001, “Self-Interaction in Elasticity
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 4797
–4823
.8.
England
, A. E.
, 1971, Complex Variable Methods in Elasticity
, Wiley Interscience
, London, UK
.9.
Ru
, C. Q.
, 2002, “On Complex-Variable Formulation for Finite Plane Elastostatics of Harmonic Materials
,” Acta Mech.
0001-5970, 156
, pp. 219
–234
.10.
Ru
, C. Q.
, Schiavone
, P.
, Sudak
, L. J.
, and Mioduchowski
, A.
, 2005, “Uniformity of Stresses Inside an Elliptic Inclusion in Finite Plane Elastostatics
,” Int. J. Non-Linear Mech.
0020-7462, 40
(2–3
), pp. 281
–287
.11.
Wang
, G. F.
, Schiavone
, P.
, and Ru
, C.-Q.
, 2005, “Harmonic Shapes in Finite Elasticity Under Non-Uniform Loading
,” ASME J. Appl. Mech.
0021-8936, 72
(5
), pp. 691
–694
.12.
Wang
, G. F.
, Schiavone
, P.
, and Ru
, C.-Q.
, 2005, “Surface Instability of a Semi-Infinite Harmonic Solid Under van der Waals Attraction
,” Acta Mech.
0001-5970, 180
(1–4
), pp. 1
–10
.13.
Johnson
, K. L.
, 1985, Contact Mechanics
, Cambridge University Press
, London, UK
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.