This paper suggests an analytical approach to investigating vibrations of a laminated plate with a noncanonical shape in plan view under impact with an impactor having a semispherical end. The approach suggested is based on the immersion method. The dynamic behavior of the plate is described by the first-order theory accounting for transverse shear strain, thickness reduction, and normal element rotation inertia in each layer. Impact has been analyzed for different points of the plate whose contour consists of straight lines and circle arcs. The theoretical results are consistent with experimental data obtained with the dynamic wide-range strain measurement technique.
Issue Section:
Research Papers
1.
Goldsmith
, W.
, 1960, Impact. The Theory and Physical Behaviour of Colliding Solids
, Edward Arnold
, London
.2.
Jones
, N.
, 1989, Structural Impact
, Cambridge University Press
, Cambridge
.3.
1990,
High Velocity Impact Dynamics
, J. A.
Zukas
, ed., Wiley
, New York
.4.
Corbett
, G. G.
, Reid
, S. R.
, and Johnson
, W.
, 1996, “Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review
,” Int. J. Impact Eng.
0734-743X, 18
(2
), pp. 141
–230
.5.
Abrate
, S.
, 1998, Impact on Composite Structures
, Cambridge University Press
, Cambridge
.6.
Fields
, J. E.
, Walley
, S. M.
, Proud
, W. G.
, Goldrein
, H. T.
, and Siviour
, C. R.
, 2004, “Review of Experimental Techniques for High Rate Deformation and Shock Studies
,” Int. J. Impact Eng.
0734-743X, 30
(7
), pp. 725
–775
.7.
Alhazza
, Kh. A.
, and Alhazza
, A. A.
, 2004, “A Review of the Vibrations of Plates and Shells
,” Shock Vib. Dig.
0583-1024, 36
(5
), pp. 377
–395
.8.
Qiu
, X.
, Deshpande
, V. S.
, and Fleck
, N. A.
, 2004, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading
,” ASME J. Appl. Mech.
0021-8936, 71
(5
), pp. 637
–645
.9.
McShane
, G. J.
, Radford
, D. D.
, Deshpande
, V. S.
, and Fleck
, N. A.
, 2006, “The Response of Clamped Sandwich Plates With Lattice Cores Subjected to Shock Loading
,” Eur. J. Mech. A/Solids
0997-7538, 25
(2
), pp. 215
–229
.10.
Malekzadeh
, K.
, Khalili
, M. R.
, and Mittal
, R. K.
, 2006, “Analytical Prediction of Low-velocity Impact Response of Composite Sandwich Panels Using New TDOF Spring-Mass-Damper Model
,” J. Compos. Mater.
0021-9983, 40
(18
), pp. 1671
–1689
.11.
Naidu
, N. V. S.
, and Sinha
, P. K.
, 2005, “Nonlinear Impact Behaviour of Laminated Composite Shells in Hygrothermal Environments
,” Int. J. Crashworthiness
1358-8265, 10
(4
), pp. 389
–402
.12.
Schubel
, P. M.
, Luo
, J.-J.
, and Daniel
, I. M.
, 2005, “Low Velocity Impact Behavior of Composite Sandwich Panels
,” Composites, Part A
1359-835X, 36
(10
), pp. 1389
–1396
.13.
Lataillade
, J. L.
, Guillaumat
, L.
, and Vidal
, B.
, 2001, “Materials and Structures: Some Experimental and Calculations Procedures for the Responses of Composites Plates and Sandwich Panels to Low Velocity Impacts
,” New Experimental Methods in Material Dynamics and Impact
, W. K.
Nowacki
and J. R.
Klepaczko
, eds., Institute of Fundamental Technological Research
, Warsaw, Poland
, pp. 267
–307
.14.
Banerjee
, S.
, Prosser
, W.
, and Mal
, A.
, 2005, “Calculation of the Response of a Composite Plate to Localized Dynamic Surface Loads Using a New Wave Number Integral Method
,” ASME J. Appl. Mech.
0021-8936, 72
(1
), pp. 18
–24
.15.
Olsson
, R.
, 1992, “Impact Response of Orthotropic Composite Plates Predicted From a One-Parameter Differential Equation
,” AIAA J.
0001-1452, 30
(6
), pp. 1587
–1596
.16.
Anderson
, T.
, Madenci
, E.
, Burton
, W. S.
, and Fish
, J. C.
, 1998, “Analytical Solution of Finite-Geometry Composite Panels Under Transient Surface Loading
,” Int. J. Solids Struct.
0020-7683, 35
(12
), pp. 1219
–1239
.17.
Anderson
, T.
, and Madenci
, E.
, 2000, “Graphite∕Epoxy Foam Sandwich Panels Under Quasi-Static Indentation
,” Eng. Fract. Mech.
0013-7944, 67
(4
), pp. 329
–344
.18.
Anderson
, T.
, and Madenci
, E.
, 2000, “Experimental Investigation of Low-Velocity Impact Characteristics of Sandwich Composites
,” Compos. Struct.
0263-8223, 50
(3
), pp. 239
–247
.19.
Smetankina
, N. V.
, Shupikov
, A. N.
, Sotrikhin
, S. Yu.
, and Yareschenko
, V. G.
, 2007, “Dynamic Response of an Elliptic Plate to Impact Loading. Theory and Experiment
,” Int. J. Impact Eng.
0734-743X, 34
(2
), pp. 264
–276
.20.
Timoshenko
, S. P.
, Young
, D. H.
, and Weaver
, W.
Jr., 1974, Vibration Problems in Engineering
, Wiley
, New York
.21.
Tan
, T. M.
, and Sun
, C. T.
, 1988, “Use of Statical Indentation Laws in the Impact Analysis of Laminated Composite Plates
,” ASME J. Appl. Mech.
0021-8936, 52
(1
), pp. 6
–12
.22.
Lin
, H. J.
, and Lee
, Y. J.
, 1990, “Use of Statical Indentation Laws in the Impact Analysis of Composite Laminated Plates and Shells
,” ASME J. Appl. Mech.
0021-8936, 57
(3
), pp. 787
–789
.23.
Nosier
, A.
, Kapania
, R. K.
, and Reddy
, J. N.
, 1994, “Low-Velocity Impact of Laminated Composites Using a Layerwise Theory
,” Comput. Mech.
0178-7675, 13
(5
), pp. 360
–379
.24.
Smetankina
, N. V.
, Sotrikhin
, S. Yu.
, and Shupikov
, A. N.
, 1995, “Theoretical and Experimental Investigation of Vibration of Multilayer Plates Under the Action of Impulse and Impact Loads
,” Int. J. Solids Struct.
0020-7683, 32
(8∕9
), pp. 1247
–1258
.25.
Dinnik
, A. N.
, 1952, Selected Works
, Academy of Sciences of the Ukrainian S.S.R. Publishers
, Kiev
.26.
Shupikov
, A. N.
, and Smetankina
, N. V.
, 2001, “Non-Stationary Vibration of Multilayer Plates of an Uncanonical Form. The Elastic Immersion Method
,” Int. J. Solids Struct.
0020-7683, 38
(14
), pp. 2271
–2290
.27.
Shupikov
, A. N.
, and Ugrimov
, S. V.
, 1999, “Vibrations of Multilayer Plates Under the Effect of Impulse Loads. Three-Dimensional Theory
,” Int. J. Solids Struct.
0020-7683, 36
(22
), pp. 3391
–3402
.28.
Lanczos
, C.
, 1956, Applied Analysis
, Prentice Hall
, Englewood Cliffs, NJ
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.