We present an innovative method for characterizing the distributive elastic properties in nonlinear membranes. The method hinges on an inverse elastostatic approach of stress analysis that can compute the wall stress in a deformed convex membrane structure using assumed elastic models without knowing the realistic material parameters. This approach of stress analysis enables us to obtain the wall stress data independently of the material in question. The stress and strain data collected during a finite inflation motion are used to delineate the elastic property distribution in selected regions. In this paper, we discuss the theoretical and computational underpinnings of the method and demonstrate its feasibility using numerical simulations involving a saclike structure of known material property.

1.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
, 1951, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
243A
, pp.
251
288
.
2.
Wineman
,
A.
,
Wilson
,
D.
, and
Melvin
,
J. W.
, 1979, “
Material Identification of Soft Tissue Using Membrane Inflation
,”
J. Biomech.
0021-9290,
12
, pp.
841
850
.
3.
Bylski
,
D. I.
,
Kriewall
,
T. J.
,
Akkas
,
N.
, and
Melvin
,
J. W.
, 1986, “
Mechanical Behavior of Fetal Dura Mater Under Large Deformation Biaxial Tension
,”
J. Biomech.
0021-9290,
19
, pp.
19
26
.
4.
Kriewall
,
T. J.
,
Akkas
,
N.
,
Bylski
,
D. I.
, and
Melvin
,
J. W.
, 1993, “
Mechanical Behavior of Fetal Dura Mater Under Large Axisymmetric Inflation
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
71
76
.
5.
Hsu
,
F. P. K.
,
Schwab
,
C.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
, 1994, “
Identification of Response Functions for Nonlinear Membranes Via Axisymmetric Inflation Tests: Implications for Biomechanics
,”
Int. J. Solids Struct.
0020-7683,
31
, pp.
3375
3386
.
6.
Hsu
,
F. P. K.
,
Liu
,
A. M. C.
,
Downs
,
J.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
, 1995, “
A Triplane Video-Based Experimental System for Studying Axisymmetrically Inflated Biomembranes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
42
(
5
), pp.
442
450
.
7.
Storakers
,
B.
, 1979, “
An Explicit Method to Determine Response Coefficients in Finite Elasticity
,”
J. Elast.
0374-3535,
9
, pp.
207
214
.
8.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
, pp.
199
246
.
9.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2008, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
477
486
.
10.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1996, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
136
, pp.
47
57
.
11.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1998, “
Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
821
838
.
12.
Yamada
,
T.
, 1998, “
Finite Element Procedure of Initial Shape Determination for Hyperelasticity
,”
Struct. Eng. Mech.
1225-4568,
6
(
2
), pp.
173
183
.
13.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
, pp.
693
696
.
14.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
1239
1261
.
15.
Zhou
,
X.
, and
Lu
,
J.
, 2008, “
Inverse Formulation for Geometrically Exact Stress Resultant Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1278
1302
.
16.
Green
,
A. E.
, and
Rivlin
,
R. S.
, 1964, “
On Cauchy’s Equation of Motion
,”
Z. Angew. Math. Phys.
0044-2275,
15
, pp.
290
292
.
17.
Spencer
,
A. J. M.
, 1970, “
The Static Theory of Finite Elasticity
,”
IMA J. Appl. Math.
0272-4960,
6
(
2
), pp.
164
200
.
18.
Truesdell
,
C.
, and
Noll
,
W.
, 1965, “
The Non-Linear Field Theories of Mechanics
,”
Handbuch der Physik
, Vol. Bd. 3/3,
S.
Flügge
, ed.,
Springer-Verlag
,
Berlin
.
19.
Noll
,
W.
, 1972, “
A New Mathematical Theory of Simple Material
,”
Arch. Ration. Mech. Anal.
0003-9527,
48
, pp.
1
50
.
20.
Epstein
,
M.
, and
Maugin
,
G. A.
, 1990, “
The Energy-Momentum Tensor and Material Uniformity in Finite Elasticity
,”
Acta Mech.
0001-5970,
83
(
3–4
), pp.
127
133
.
21.
Epstein
,
M.
, and
Maugin
,
G. A.
, 1996, “
On the Geometrical Material Structure of Anelasticity
,”
Acta Mech.
0001-5970,
115
, pp.
119
131
.
22.
Maugin
,
G. A.
, and
Epstein
,
M.
, 1998, “
Geometrical Material Structure of Elastoplasticity
,”
Int. J. Plast.
0749-6419,
14
, pp.
109
115
.
23.
Miehe
,
C.
, 1998, “
A Constitutive Frame of Elastoplasticity at Large Strains Based on the Notion of a Plastic Metric
,”
Int. J. Solids Struct.
0020-7683,
35
(
30
), pp.
3859
3897
.
24.
Lu
,
J.
, and
Papadopoulos
,
P.
, 2004, “
A Covariant Formulation of Anisotropic Finite Plasticity: Theoretical Development
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
5335
5358
.
25.
Lu
,
J.
, 2006, “
A Covariant Condition and Related Constitutive Results in Finite Plasticity
,”
ZAMP
0044-2275,
57
, pp.
313
323
.
26.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
Mcculloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
27.
Taber
,
L. A.
, 1995, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
487
545
.
28.
Johnson
,
B. E.
, and
Hoger
,
A.
, 1995, “
The Use of a Virtual Configuration in Formulating Constitutive Equations for Residually Stressed Elastic Materials
,”
J. Elast.
0374-3535,
41
, pp.
177
215
.
29.
Hoger
,
A.
, 1997, “
Virtual Configurations and Constitutive Equations for Residually Stressed Bodies With Material Symmetry
,”
J. Elast.
0374-3535,
48
, pp.
125
144
.
30.
Olsson
,
T.
,
Stålhand
,
J.
, and
Klarbring
,
A.
, 2006, “
Modeling Initial Strain Distribution in Soft Tissues With Application to Arteries
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
, pp.
27
38
.
31.
Boehler
,
J. P.
, 1979, “
A Simple Derivation of Representations for Non-Polynomial Constitutive Equations in Some Case of Anisotropy
,”
Z. Angew. Math. Mech.
0044-2267,
59
, pp.
157
167
.
32.
Lu
,
J.
, and
Papadopoulos
,
P.
, 2000, “
A Covariant Constitutive Description for Anisotropic Non-Linear Elasticity
,”
ZAMP
,
51
, pp.
204
214
. 0044-2275
33.
Rossettos
,
J. N.
, 1966, “
Nonlinear Membrane Solutions for Symmetrically Loaded Deep Membranes of Revolution
,”
NASA
Technical Report No. NASA TN D-3297.
34.
Wu
,
C. H.
, and
Peng
,
D. Y. P.
, 1972, “
On the Asymptotically Spherical Deformation of Arbitrary Membranes of Revolution Fixed Along an Edge and Inflated by Large Pressures—A Nonlinear Boundary Layer Phenomenon
,”
SIAM J. Appl. Math.
0036-1399,
23
, pp.
133
152
.
35.
Taylor
,
R. L.
, 2003, FEAP User Manual, v7.5, Technical report, Department of Civil and Environmental Engineering, University of California, Berkeley.
36.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2005, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
0036-1445,
47
, pp.
99
131
.
37.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin—I. Experimental System
,”
J. Biomech.
0021-9290,
7
, pp.
29
34
.
38.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin—II. Experimental Results
,”
J. Biomech.
0021-9290,
7
, pp.
171
182
.
39.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
, 2005, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
709
715
.
40.
Kavanagh
,
K. T.
, and
Clough
,
R. W.
, 1971, “
Finite Element Applications in the Characterization of Elastic Solids
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
11
23
.
41.
Iding
,
R. H.
,
Pister
,
K. S.
, and
Taylor
,
R. L.
, 1974, “
Identification of Nonlinear Elastic Solids by a Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
4
, pp.
121
142
.
42.
Kyriacou
,
S. K.
,
Shah
,
A. D.
, and
Humphrey
,
J. D.
, 1997, “
Inverse Finite Element Characterization of Nonlinear Hyperelastic Membrane
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
257
262
.
43.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2003, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
363
371
.
44.
Beatty
,
M. F.
, 1987, “
A Class of Universal Relations in Isotropic Elasticity
,”
J. Elast.
0374-3535,
17
, pp.
113
121
.
45.
Waldman
,
S. D.
, and
Lee
,
J. M.
, 2002, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues. Part 1: Dynamic Behavior
,”
J. Mater. Sci. Mater. Med.
,
13
, pp.
933
938
. 0957-4530
46.
Waldman
,
S. D.
,
Sacks
,
M. S.
, and
Lee
,
J. M.
, 2002, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues. Part II: Fiber Orientation
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
1215
1221
.
You do not currently have access to this content.