Energetic arguments are used to understand the mechanics of Stranski–Krastanow epitaxial systems constrained to grow on a finite area of a substrate. Examples include selective area epitaxy and growth on patterned substrate features as raised mesa and etched pits. Accounting only for strain energy, (isotropic) surface energy, wetting layer potential energy, and geometric constraints, a rich behavior is obtained, whereby equilibrium configurations consist of a single island, multiple islands, or no islands, depending on the size of the growth area. It is shown that island formation is completely suppressed in the case of growth on a sufficiently small area. These behaviors are in stark contrast to growth on an indefinitely large area, where the same model suggests that the minimum free energy configuration of systems beyond the wetting layer transition thickness is a single island atop a wetting layer. The constraint of growing on a finite area can suppress island coarsening and produce minimum energy configurations with multiple self-organized islands of uniform size and shape.

1.
Kukta
,
R. V.
, and
Freund
,
L. B.
, 1997, “
Minimum Energy Configuration of Epitaxial Material Clusters on a Lattice-Mismatched Substrate
,”
J. Mech. Phys. Solids
0022-5096,
45
(
11–12
), pp.
1835
1860
.
2.
Johnson
,
H. T.
, and
Freund
,
L. B.
, 1997, “
Mechanics of Coherent and Dislocated Island Morphologies in Strained Epitaxial Material Systems
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6081
6090
.
3.
Lee
,
S. C.
,
Stintz
,
A.
, and
Brueck
,
S. R. J.
, 2002, “
Nanoscale Limited Area Growth of InAs Islands on GaAs(001) by Molecular Beam Epitaxy
,”
J. Appl. Phys.
0021-8979,
91
, pp.
3282
3288
.
4.
Vescan
,
L.
,
Stoica
,
T.
,
Hollander
,
B.
,
Nassiopoulou
,
A.
,
Olzierski
,
A.
,
Raptis
,
I.
, and
Sutter
,
E.
, 2003, “
Self-Assembling of Ge on Finite Si(001) Areas Comparable With the Island Size
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
3517
3519
.
5.
Yoon
,
T. -S.
,
Zhao
,
Z.
,
Liu
,
J.
,
Xie
,
Y. -H.
,
Ryu
,
D. Y.
,
Russell
,
T. P.
,
Kim
,
H. -M.
, and
Kim
,
K. -B.
, 2006, “
Selective Growth of Ge Islands on Nanometer-Scale Patterned SiO2/Si Substrate by Molecular Beam Epitaxy
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
063107
.
6.
Cojocaru
,
C. V.
,
Bernardi
,
A.
,
Reparaz
,
J. S.
,
Alonso
,
M. I.
,
MacLeod
,
J. M.
,
Harnagea
,
C.
, and
Rosei
,
F.
, 2007, “
Site-Controlled Growth of Ge Nanostructures on Si(100) via Pulsed Laser Deposition Nanostenciling
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
113112
.
7.
Kitajima
,
T.
,
Liu
,
B.
, and
Leone
,
S. R.
, 2002, “
Two-Dimensional Periodic Alignment of Self-Assembled Ge Islands on Patterned Si(001) Surfaces
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
497
499
.
8.
Dais
,
C.
,
Solak
,
H. H.
,
Müller
,
E.
, and
Grützmacher
,
D.
, 2008, “
Impact of Template Variations on Shape and Arrangement of Si/Ge Quantum Dot Arrays
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
143102
.
9.
Lu
,
W.
, and
Suo
,
Z.
, 2001, “
Dynamics of Nanoscale Pattern Formation of an Epitaxial Monolayer
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1937
1950
.
10.
Lu
,
W.
, and
Kim
,
D.
, 2004, “
Patterning Nanoscale Structures by Surface Chemisty
,”
Nano Lett.
1530-6984,
4
, pp.
313
316
.
11.
Kukta
,
R. V.
, and
Kouris
,
D.
, 2005, “
On the Mechanisms of Epitaxial Island Alignment on Patterned Substrates
,”
J. Appl. Phys.
0021-8979,
97
, p.
033527
.
12.
Machtay
,
N. D.
, and
Kukta
,
R. V.
, 2006, “
Energetics of Epitaxial Island Arrangements on Substrate Mesas
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
212
219
.
13.
Liu
,
P.
,
Zhang
,
Y. -W.
,
Lu
,
C.
, and
Lam
,
K. -Y.
, 2008, “
Three-Dimensional Analysis of the Guided-Assembled Growth of Heteroepitaxial Islands on Imperfectly Pre-Patterned Surfaces
,”
Nanotechnology
0957-4484,
19
, p.
185302
.
14.
Pan
,
E.
,
Sun
,
M.
,
Chung
,
P. W.
, and
Zhu
,
R.
, 2007, “
Three-Dimensional Kinetic Monte Carlo Simulation of Prepatterned Quantum-Dot Island Growth
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
193110
.
15.
Liu
,
P.
,
Zhang
,
Y. W.
, and
Lu
,
C.
, 2007, “
Phase Diagrams for Growing Ordered Heteroepitaxial Quantum Dots and Quantum Rings by Surface Prepatterning
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
071905
.
16.
Chiu
,
C. -H.
, and
Huang
,
Z.
, 2007, “
Numerical Simuation for the Formation of Nanostructures on the Stranski-Krastanow Systems by Surface Undulation
,”
J. Appl. Phys.
0021-8979,
101
, p.
113540
.
17.
Levine
,
M. S.
,
Golovin
,
A. A.
,
Davis
,
S. H.
, and
Voorhees
,
P. W.
, 2007, “
Self-Assembly of Quantum Dots in a Thin Epitaxial Film Wetting an Elastic Substrate
,”
Phys. Rev. B
0163-1829,
75
, p.
205312
.
18.
Kukta
,
R. V.
, and
Bhattacharya
,
K.
, 2002, “
A Micromechanical Model of Surface Steps
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
615
649
.
19.
Kukta
,
R. V.
,
Peralta
,
A.
, and
Kouris
,
D.
, 2002, “
Elastic Interaction of Durface Steps: Effect of Atomic-Scale Roughness
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
186102
.
20.
Shchukin
,
V. A.
,
Ledentsov
,
N. N.
,
Kop’ev
,
P. S.
, and
Bimberg
,
D.
, 1995, “
Spontaneous Ordering of Arrays of Coherent Strained Islands
,”
Phys. Rev. Lett.
0031-9007,
75
(
16
), pp.
2968
2971
.
21.
Tambe
,
D. T.
, and
Shenoy
,
V. B.
, 2004, “
On the Energetic Origin of Self-Limiting Trenches Formed Around Ge/Si Quantum Dots
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1586
1588
.
22.
Denker
,
U.
,
Schmidt
,
O.
,
Jin-Philipp
,
N. -Y.
, and
Eberl
,
K.
, 2001, “
Trench Formation Around and Between Self-Assembled Ge Islands on Si
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
3723
3725
.
You do not currently have access to this content.