Particle shape plays a crucial role in the design of novel reinforced composites. We introduce the notion of a geometrical anisotropy index A to characterize the particle shape and establish its relationship with the effective elastic constants of biphase composite materials. Our analysis identifies three distinct regions of A: (i) By using ovoidal particles with small A, the effective stiffness scales linearly with A for a given volume fraction α; (ii) for intermediate values of A, the use of prolate particles yield better elastic properties; and (iii) for large A, the use of oblate particles result in higher effective stiffness. Interestingly, the transition from (ii) to (iii) occurs at a critical anisotropy Acr and is independent of α.

1.
Landis
,
W. J.
, 1995, “
The Strength of a Calcified Tissue Depends in Part on the Molecular Structure and Organization of Its Constituent Mineral Crystals in Their Organic Matrix
,”
Bone (N.Y.)
8756-3282,
16
, pp.
533
544
.
2.
Tesch
,
W.
,
Eidelman
,
N.
,
Roschger
,
P.
,
Goldenberg
,
F.
,
Klaushofer
,
K.
, and
Fratzl
,
P.
, 2001, “
Graded Microstructure and Mechanical Properties of Human Crown Dentin
,”
Calcif. Tissue Int.
0171-967X,
69
, pp.
147
157
.
3.
Menig
,
R.
,
Meyers
,
M. H.
,
Meyers
,
M. A.
, and
Vecchio
,
K. S.
, 2000, “
Quasi-Static and Dynamic Mechanical Response of Haliotis Rufescens (Abalone) Shells
,”
Acta Mater.
1359-6454,
48
, pp.
2383
2398
.
4.
Ding
,
S. Y.
, and
Himmel
,
M. E.
, 2006, “
The Maize Primary Cell Wall Microfibril: A New Model Derived From Direct Visualization
,”
J. Agric. Food Chem.
0021-8561,
54
, pp.
597
606
.
5.
Tjong
,
S. C.
, 2006, “
Structural and Mechanical Properties of Polymer Nanocomposites
,”
Mater. Sci. Eng. R.
0927-796X,
53
, pp.
73
197
.
6.
Giannelis
,
E. P.
, 1996, “
Polymer Layered Silicate Nanocomposites
,”
J. Adv. Mater.
1070-9789,
8
, pp.
29
35
.
7.
Xie
,
X. L.
,
Mai
,
Y. W.
, and
Zhou
,
X. P.
, 2005, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng. R.
0927-796X,
49
, pp.
89
112
.
8.
Ferrari
,
M.
, 1994, “
Composite Homogenization Via the Equivalent Poly-Inclusion Approach
,”
Composites Eng.
0961-9526,
4
, pp.
37
45
.
9.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
10.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
0950-1207,
241
, pp.
376
396
.
11.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Kluwer Academic
,
Dordrecht
.
12.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
, 2008, “
Universal Elastic Anisotropy Index
,”
Phys. Rev. Lett.
0031-9007,
101
, p.
055504
.
13.
Shi
,
X.
,
Hudson
,
J. L.
,
Spicer
,
P. P.
,
Tour
,
J. M.
,
Krishnamoorti
,
R.
, and
Mikos
,
A. G.
, 2005, “
Rheological Behaviour and Mechanical Characterization of Injectable Poly(propylene fumarate)/Single-Walled Carbon Nanotube Composites for Bone Tissue Engineering
,”
Nanotechnology
0957-4484,
16
, pp.
S531
S538
.
14.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
15.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
You do not currently have access to this content.