Particle shape plays a crucial role in the design of novel reinforced composites. We introduce the notion of a geometrical anisotropy index to characterize the particle shape and establish its relationship with the effective elastic constants of biphase composite materials. Our analysis identifies three distinct regions of : (i) By using ovoidal particles with small , the effective stiffness scales linearly with for a given volume fraction ; (ii) for intermediate values of , the use of prolate particles yield better elastic properties; and (iii) for large , the use of oblate particles result in higher effective stiffness. Interestingly, the transition from (ii) to (iii) occurs at a critical anisotropy and is independent of .
Issue Section:
Research Papers
1.
Landis
, W. J.
, 1995, “The Strength of a Calcified Tissue Depends in Part on the Molecular Structure and Organization of Its Constituent Mineral Crystals in Their Organic Matrix
,” Bone (N.Y.)
8756-3282, 16
, pp. 533
–544
.2.
Tesch
, W.
, Eidelman
, N.
, Roschger
, P.
, Goldenberg
, F.
, Klaushofer
, K.
, and Fratzl
, P.
, 2001, “Graded Microstructure and Mechanical Properties of Human Crown Dentin
,” Calcif. Tissue Int.
0171-967X, 69
, pp. 147
–157
.3.
Menig
, R.
, Meyers
, M. H.
, Meyers
, M. A.
, and Vecchio
, K. S.
, 2000, “Quasi-Static and Dynamic Mechanical Response of Haliotis Rufescens (Abalone) Shells
,” Acta Mater.
1359-6454, 48
, pp. 2383
–2398
.4.
Ding
, S. Y.
, and Himmel
, M. E.
, 2006, “The Maize Primary Cell Wall Microfibril: A New Model Derived From Direct Visualization
,” J. Agric. Food Chem.
0021-8561, 54
, pp. 597
–606
.5.
Tjong
, S. C.
, 2006, “Structural and Mechanical Properties of Polymer Nanocomposites
,” Mater. Sci. Eng. R.
0927-796X, 53
, pp. 73
–197
.6.
Giannelis
, E. P.
, 1996, “Polymer Layered Silicate Nanocomposites
,” J. Adv. Mater.
1070-9789, 8
, pp. 29
–35
.7.
Xie
, X. L.
, Mai
, Y. W.
, and Zhou
, X. P.
, 2005, “Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,” Mater. Sci. Eng. R.
0927-796X, 49
, pp. 89
–112
.8.
Ferrari
, M.
, 1994, “Composite Homogenization Via the Equivalent Poly-Inclusion Approach
,” Composites Eng.
0961-9526, 4
, pp. 37
–45
.9.
Mori
, T.
, and Tanaka
, K.
, 1973, “Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,” Acta Metall.
0001-6160, 21
, pp. 571
–574
.10.
Eshelby
, J. D.
, 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
0950-1207, 241
, pp. 376
–396
.11.
Mura
, T.
, 1987, Micromechanics of Defects in Solids
, Kluwer Academic
, Dordrecht
.12.
Ranganathan
, S. I.
, and Ostoja-Starzewski
, M.
, 2008, “Universal Elastic Anisotropy Index
,” Phys. Rev. Lett.
0031-9007, 101
, p. 055504
.13.
Shi
, X.
, Hudson
, J. L.
, Spicer
, P. P.
, Tour
, J. M.
, Krishnamoorti
, R.
, and Mikos
, A. G.
, 2005, “Rheological Behaviour and Mechanical Characterization of Injectable Poly(propylene fumarate)/Single-Walled Carbon Nanotube Composites for Bone Tissue Engineering
,” Nanotechnology
0957-4484, 16
, pp. S531
–S538
.14.
Hashin
, Z.
, and Shtrikman
, S.
, 1963, “A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,” J. Mech. Phys. Solids
0022-5096, 11
, pp. 127
–140
.15.
Hill
, R.
, 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles
,” J. Mech. Phys. Solids
0022-5096, 11
, pp. 357
–372
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.