This study addresses the problem of an elastically anisotropic elliptical inhomogeneity bonded to an infinite elastically anisotropic matrix through a linear viscous interface. Our results show that uniform, as well as time-decaying stresses, still exist inside the elliptical inhomogeneity when the interface drag parameter, which is varied along the interface, is properly designed, and when the matrix is subjected to remote uniform antiplane shearing. Interestingly, the internal stresses decay with not one but two relaxation times. Some special cases are discussed in detail to demonstrate the obtained solutions.

1.
Antipov
,
Y. A.
, and
Schiavone
,
P.
, 2003, “
On the Uniformity of Stresses Inside an Inhomogeneity of Arbitrary Shape
,”
IMA J. Appl. Math.
0272-4960,
68
, pp.
299
311
.
2.
Wang
,
X.
,
Pan
,
E.
, and
Sudak
,
L. J.
, 2008, “
Uniform Stresses Inside an Elliptical Inhomogeneity With an Imperfect Interface in Plane Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
054501
.
3.
Wang
,
X.
, 2010, “
Uniformity of Stresses Inside an Anisotropic Elliptical Inhomogeneity With an Imperfect Interface
,”
J. Mech. Mater. Struct.
1559-3959,
4
, pp.
1595
1602
.
4.
Gao
,
J.
, 1995, “
A Circular Inclusion With Imperfect Interface: Eshelby's Tensor and Related Problems
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
860
866
.
5.
Ru
,
C. Q.
, and
Schiavone
,
P.
, 1997, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. London, Ser. A
0950-1207,
453
, pp.
2551
2572
.
6.
Benveniste
,
Y.
, 2006, “
A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between Two Anisotropic Media
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
708
734
.
7.
Asheby
,
M. F.
, and
Frost
,
H.
, 1982,
Deformation Maps
,
Pergamon
,
Oxford
.
8.
Kim
,
K. T.
, and
McMeeking
,
R. M.
, 1995, “
Power Law Creep With Interface Slip and Diffusion in a Composite Material
,”
Mech. Mater.
0167-6636,
20
, pp.
153
164
.
9.
Wang
,
X.
, 2009, “
Nonuniform Interfacial Slip in Fibrous Composite
,”
J. Mech. Mater. Struct.
1559-3959,
4
(
1
), pp.
107
119
.
10.
Kattis
,
M. A.
, and
Providas
,
E.
, 1998, “
Two-Phase Potentials in Anisotropic Elasticity: Antiplane Deformation
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
801
811
.
11.
He
,
L. H.
, and
Lim
,
C. W.
, 2001, “
Time-Dependent Interfacial Sliding in Fiber Composites Under Longitudinal Shear
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
579
584
.
12.
Wu
,
C. H.
, and
Chen
,
C. H.
, 1990, “
A Crack in a Confocal Elliptic Inhomogeneity Embedded in an Infinite Medium
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
91
96
.
13.
Shen
,
H.
,
Schiavone
,
P.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2000, “
An Elliptical Inclusion With Imperfect Interface in Anti-Plane Shear
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4557
4575
.
You do not currently have access to this content.