A new experimental method for the incorporation of residual stresses (RS) in standard fatigue steels specimens was developed. RS were introduced by means of high frequency (360 kHz) induction heating. Surface tensile RS resulted from cooling down the specimen subjected to a high thermal gradient. To preserve the mechanical properties of the steel, it was necessary to circulate a coolant at the center of the specimen. The 304L austenitic stainless steel does not undergo phase transformation nor micro structural changes in the solid state and was thus selected for this purpose. Multiphysics finite element (FE) analysis was used to calculate the distributed RS in the fatigue samples. These calculations were compared to XRD measurements and a very good agreement was obtained. It was therefore demonstrated that RS induced with induction heating could be numerically assessed. This conditioning method was then proved efficient to study the only influence of a predetermined amount of RS on the fatigue properties of austenitic 304L steel without undergoing influences of other parameters such as microstructure, surface finish and geometry.

References

1.
Lawrence
,
F. V.
, 1981, “
The Predicted Influence of Welded Residual Stresses on Fatigue Crack Initiation
,”
Ind. Diamond Rev.
,
41
, pp.
105
117
.
2.
Lawrence
,
F. V.
, and
Yung
,
J. -Y
, 1987, “
Estimating the Effects of Residual Stress on the Fatigue Life of Notched Components
,”
Technology, Applications, Effects. Residual Stresses
,
A.
Niku-Lari
, ed.,
Pergamon
,
New York
, pp.
483
509
.
3.
Teng
,
T.-L.
,
Fung
,
C.-P.
, and
Chang
,
P.-H.
, 2002, “
Effect of Weld Geometry and Residual Stresses on Fatigue in Butt-Welded Joints
,”
Int. J. Pressure Vessels Piping
,
79
, pp.
467
482
.
4.
Tricoteaux
,
A.
,
Fardoun
,
F.
,
Degallaix
,
S.
, and
Sauvage
,
F.
, 1995, “
Fatigue Crack Initiation Life Prediction in High Strength Structural Steel Welded Joints
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
, pp.
189
200
.
5.
Belassel
,
M.
,
Brauss
,
M.
,
Berkley
,
S. G.
, and
Pineault
,
J.
, 2003, “
Effect of Residual Stress on the Fatigue Life Resistance of Ni-Base Materials Operating Under High Applied Loads
,”
Fatigue Damage of Materials: Experiment and Analysis
,
A.
Varvani-Farahani
and
C. A.
Brebbia
, eds.,
WIT Press
,
Ashurst, U.K.
, pp.
125
135
.
6.
Farrahi
,
G. H.
,
Lebrun
,
J. L.
, and
Couratin
,
D.
, 1995, “
Effect of Shot Peening on Residual Stress and Fatigue Life of a Spring Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
, pp.
211
220
.
7.
Fontanari
,
V.
,
Frendo
,
F.
,
Rosellini
,
W.
, and
Scardi
,
P.
, 2001, “
Analysis of Residual Stress Distribution in Shot Peened Al 6082 T5 Alloy Subjected to Fatigue Loading
,”
Surface Treatment V: Computer Methods and Experimental Measurements
,
C. A.
Brebbia
, ed.,
WIT Press
,
Ashurst, U.K.
, pp.
333
342
.
8.
Flavenot
,
J. F.
, and
Skalli
,
N.
, 1983, “
Fatigue Strength Estimation Incorporating Residual Stresses
,”
CIRP Ann.
,
32
, pp.
475
479
.
9.
Zhang
,
H.-Y.
,
Stephens
,
R. I.
, and
Glinka
,
G.
, 1999, “
Subsurface Fatigue Crack Initiation and Propagation Behavior of Induction-Hardened Shafts Under the Effect of Residual and Applied Bending Stresses
,”
ASTM Spec. Tech. Publ.
,
1360
, pp.
240
260
.
10.
Maluf
,
O.
,
Milan
,
M. T.
, and
Spinelli
,
D.
, 2004, “
Effect of Surface Rolling on Fatigue Behavior of a Pearlitic Ductile Cast Iron
,”
J. Mater. Eng. Perform.
,
13
, pp.
195
199
.
11.
Lai
,
M. O.
,
Nee
,
A. Y. C.
, and
Oh
,
J. T.
, 1992, “
Effect of Residual Stress on the Fatigue Performance of the Surface of a Ballised Hole
,”
J. Mater. Process. Technol.
,
29
, pp.
301
309
.
12.
Lorrain
,
P.
, and
Corson
,
D.
, 1970,
Electromagnetic Fields and Waves
, 2nd ed.,
Freeman, San Francisco
, p.
706
.
13.
Vishay Measurements Group, 2005, “
Measurement of Residual Stresses by the Hole-Drilling Strain Gage Method
,” Report No. TN-503-6, http://www.intertechnoly.com/Vishay/pdfs/TechNotes_ TechTips/TN-503.pdf
14.
Bay
,
F.
,
Labbe
,
V.
,
Favennec
,
Y.
, and
Chenot
,
J. L.
, 2003, “
A Numerical Model for Induction Heating Processes Coupling Electromagnetism and Thermomechanics
,”
Int. J. Numer. Methods Eng.
,
58
, pp.
839
867
.
15.
Jin
,
J.
, 1993,
The Finite Element Method in Electromagnetics
,
Wiley
,
New York
, p.
443
.
16.
Zienkiewicz
,
O. C.
,
Valliapan
,
S.
, and
King
,
I. P.
, 1969, “
Elasto-Plastic Solutions of Engineering Problems ‘Initial Stress,’ Finite Element Approach
,”
Int. J. Numer. Methods
,
1
, pp.
75
100
.
17.
Paquet
,
D
, 2006, “
Modélisation des Contraintes Résiduelles Thermiques et Étude de Leur Effet sur la vie en Fatigue de L’acier Inoxydable Austénitique 304L
,” M.Sc. thesis, École Polytechnique de Montréal, Montreal, p.
287
.
18.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E
, and
Witt
,
R. J.
, 2002,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
,
New York
, p.
719
.
19.
Peckner
,
D.
, and
Bernstein
,
I. M.
, 1977,
Handbook of Stainless Steels
,
McGraw-Hill
,
New York
, pp.
19
-1–19-
36
.
20.
Touloukian
,
Y. S
, and
Buyco
,
E. H
, 1970,
Specific Heat, Metallic Element and Alloys
,
IFI/Plenum
,
New York
, pp.
700
702
.
21.
Touloukian
,
Y. S
,
Powell
,
R. W.
,
Ho
,
C. Y
, and
Klemens
,
P. G.
, 1970,
Thermal Conductivity, Metallic Element and Alloys
,
IFI/Plenum
,
New York
, pp.
1164
1170
.
22.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
, 1975,
Thermal Expansion, Metallic Element and Alloys
,
IFI/Plenum
,
New York
, pp.
1138
1158
.
You do not currently have access to this content.