This paper reports an analytical study on the elastic lateral-torsional buckling behavior of strip cantilevers (i) whose depth is given by a monotonically decreasing polygonal function of the distance to the support and (ii) which are subjected to an arbitrary number of independent conservative point loads, all acting in the same “downward” direction. The study is conducted on the basis of a one-dimensional (beam) mathematical model. A specialized model problem, consisting of a two-segment cantilever acted by two loads, applied at the free end and at the junction between segments, is first considered in detail for it “contains all the germs of generality”. It is shown that the governing differential equations can be integrated in terms of confluent hypergeometric functions or Bessel functions (themselves special cases of confluent hypergeometric functions). This allows us to establish exactly the characteristic equation for this structural system, which implicitly defines its stability boundary. Moreover, it is shown that the methods used to solve the model problem also apply to the general problem. A couple of parametric illustrative examples are discussed. Some analytical solutions are compared with the results of shell finite element analyses—a good agreement is found.

References

1.
Prandtl
,
L.
, 1899, “
Kipp-Erscheinungen – Ein Fall von Instabilem Elastischem Gleichgewicht
,” Ph.D. thesis, Ludwig-Maximilians-Universität, Munich.
2.
Michell
,
A. G. M.
, 1899, “
Elastic Stability of Long Beams Under Transverse Forces
,”
Philos. Mag.
,
48
, pp.
198
309
.
3.
Elishakoff
,
I.
, 2005,
Eigenvalues of Inhomogeneous Structures—Unusual Closed-Form Solutions
,
CRC
,
Boca Raton, FL
.
4.
Wang
,
C. M.
,
Wang
,
C. Y.
, and
Reddy
,
J. N.
, 2005,
Exact Solutions for Buckling of Structural Members
,
CRC
,
Boca Raton, FL
.
5.
Federhofer
,
K.
, 1931, “
Neue Beiträge zur Berechnung der Kipplasten Gerader Stäbe
,”
Sitzungsberichte der Akademie der Wissenschaften in Wien
,
140
, pp.
237
270
.
6.
Lee
,
L. H. N.
, 1959, “
On the Lateral Buckling of a Tapered Narrow Rectangular Beam
,”
ASME Trans. J. Appl. Mech.
,
26
, pp.
457
458
.
7.
Challamel
,
N.
,
Andrade
,
A.
, and
Camotim
,
D.
, 2007, “
An Analytical Study on the Lateral-Torsional Buckling of Linearly Tapered Cantilever Strip Beams
,”
Int. J. Struct. Stab. Dyn.
,
7
(
3
), pp.
441
456
.
8.
Polya
,
G.
, 1973,
How to Solve It—A New Aspect of Mathematical Method
,
Princeton University
,
Princeton, NJ
.
9.
Pignataro
,
M.
,
Rizzi
,
N.
, and
Luongo
,
A.
, 1991,
Stability, Bifurcation and Postcritical Behaviour of Elastic Structures
,
Elsevier
,
Amsterdam
.
10.
Nadai
,
A.
, 1925,
Elastische Platten
,
Springer
,
Berlin
.
11.
Trabucho
,
L.
, and
Viaño
,
J. M.
, 1996, “
Mathematical Modeling of Rods
,”
Handbook of Numerical Analysis
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
Elsevier
,
Amsterdam
, pp.
487
974
.
12.
Coleman
,
R. P.
, 1939, “
The Frequency of Torsional Vibration of a Tapered Beam
,”
National Advisory Committee for Aeronautics (NACA)
, Report No. 697.
13.
Lee
,
L. H. N.
, 1956, “
Non-Uniform Torsion of Tapered I-Beams
,”
J. Franklin Inst.
,
262
, pp.
37
44
.
14.
Hodges
,
D. H.
,
Ho
,
J. C.
, and
Yu
,
W.
, 2008, “
The Effect of Taper on Section Constants for In-Plane Deformation of an Isotropic Strip
,”
J. Mech. Mater. Struct.
,
3
(
3
), pp.
425
440
.
15.
Volovoi
,
V. V.
,
Hodges
,
D. H.
,
Berdichevsky
,
V. L.
, and
Sutyrin
,
V. G.
, 1999, “
Asymptotic Theory for Static Behavior of Elastic Anisotropic I-Beams
,”
Int. J. Solids Struct.
,
36
(
7
), pp.
1017
1043
.
16.
Timoshenko
,
S. P.
, and
Goodier
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
17.
Challamel
,
N.
, and
Wang
,
C. M.
, 2010, “
Exact Lateral-Torsional Buckling Solutions for Cantilevered Beams Subjected to Intermediate and End Transverse Point Loads
,”
Thin-Walled Struct.
,
48
(
1
), pp.
71
76
.
18.
Tricomi
,
F. G.
, 1954,
Funzioni Ipergeometriche Confluenti
,
Edizioni Cremonese
,
Rome
.
19.
Buchholz
,
H.
, 1969,
The Confluent Hypergeometric Function, With Special Emphasis on Its Applications
,
Springer
,
New York
.
20.
Daalhuis
,
A. B. O.
, 2010, “
Confluent Hypergeometric Functions
,”
NIST Handbook of Mathematical Functions
,
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
, eds.,
Cambridge University
,
New York
, pp.
321
349
.
21.
Slater
,
L. J.
, 1960,
Confluent Hypergeometric Functions
,
Cambridge University
,
Cambridge, England
.
22.
Challamel
,
N.
,
Andrade
,
A.
,
Camotim
,
D.
, and
Milisavlevich
,
B. M.
, 2010, “
On the Flexural-Torsional Buckling of Cantilever Strip Beam-Columns With Linearly Varying Depth
,”
J. Eng. Mech.
,
136
(
6
), pp.
787
800
.
23.
Milisavljevic
,
B. M.
, 1988, “
Lateral Buckling of a Cantilever Beam With Imperfections
,”
Acta Mech.
,
74
(
1–4
), pp.
123
137
.
24.
Panayotounakos
,
D. E.
, 1995, “
Classes of Solutions in the Problem of Stability Analysis in Bars With Varying Cross-Section and Axial Distributed Loading
,”
Int. J. Solids Struct.
,
32
(
21
), pp.
3229
3236
.
25.
Polidori
,
D.
C.
,
and
Beck
,
J. L.
, 1996, “
Approximate Solutions for Non-Linear Random Vibration Problems
,”
Probab. Eng. Mech.
,
11
(
3
), pp.
179
185
.
26.
Raj
,
A.
, and
Sujith
,
R. I.
, 2005, “
Closed-Form Solutions for the Free Longitudinal Vibration of Inhomogeneous Rods
,”
J. Sound Vib.
,
283
(
3–5
), pp.
1015
1030
.
27.
Miller
,
J. C. P.
, 1950, “
On the Choice of Standard Solutions for a Homogeneous Linear Differential Equation of the Second Order
,”
Q. J. Mech. Appl. Math.
,
3
(
2
), pp.
225
235
.
28.
Olver
,
F. W. J.
, 1974,
Asymptotics and Special Functions
,
Academic
,
New York
.
29.
Huseyin
,
K.
, 1978,
Vibrations and Stability of Multiple Parameter Systems
,
Noordhoff
,
Groningen
.
30.
Papkovitch
,
P. F.
, 1934, “
Ein Allgemeiner Satz über die Stabilität Elastischer Systeme Unter Gleichzeitiger Wirkung von Mehreren Belastung
,”
Proc. 4th International Congress for Applied Mechanics
,
Cambridge, UK
, pp.
231
232
.
31.
Schaefer
,
H.
, 1934, “
Angenäherte Berechnung des Kleinsten Eigenwertes Zusammengesetzter Systeme
,”
ZAMM
,
14
(
6
), pp.
367
368
.
32.
Challamel
,
N.
, 2007, “
Lateral-Torsional Buckling of Beams Under Combined Loading – A Reappraisal of Papkovitch-Schaefer Theorem
,”
Int. J. Struct. Stab. Dyn.
,
7
(
1
), pp.
55
79
.
33.
Watson
,
G. N.
, 1944,
A Treatise on the Theory of Bessel Functions
,
Cambridge University
,
Cambridge, England
.
34.
Tarnai
,
T.
, 1995, “
The Southwell and Dunkerley Theorems
,”
Summation Theorems in Structural Stability
,
T.
Tarnai
, ed.,
Springer
,
Vienna
, Vol.
354
, pp.
141
185
.
35.
Wolfram Research, Inc., 2006, Mathematica 6.2, Champaign, Illinois.
36.
CEA, 2011, Cast3M, Saclay, Paris.
You do not currently have access to this content.