One of the major limitations of the conventional Ritz method is its difficulty in implementation to the differential equations with natural boundary conditions at the boundary points/lines. Plates involving free edges/corners and irregularly shaped plates are two historical and classical examples which show that their solutions cannot be accurately approximated by the conventional Ritz method. To solve this difficulty, a simple, novel, and accurate Ritz formulation is introduced in this paper. It is revealed that the proposed methodology can produce much better accuracy than the conventional Ritz method for rectangular plates involving free edges/corners and skew plates.

References

1.
Leissa
,
A. W.
, 2005, “
The Historical Bases of the Rayleigh and Ritz Methods
,”
J. Sound Vib.
,
287
, pp.
961
978
.
2.
Ilanko
,
S.
, 2009, “
Comments on the Historical Basis of the Rayleigh and Ritz Methods
,”
J. Sound Vib.
,
319
, pp.
731
733
.
3.
Young
,
D.
, 1950, “
Vibration of Rectangular Plates by the Ritz Method
,”
ASME J. Appl. Mech.
,
17
, pp.
448
453
.
4.
Leissa
,
A. W.
, 1973, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.
5.
Huang
,
C. S.
,
McGee
,
O. G.
,
Leissa
,
A. W.
, and
Kim
,
J. W.
, 1995, “
Accurate Vibration Analysis of Simply Supported Rhombic Plates by Considering Stress Singularities
,”
ASME J. Vibr. Acoust.
,
117
, pp.
245
251
.
6.
Leissa
,
A.
W.
,
and
Shihada
,
S. M.
, 1995, “
Convergence of the Ritz Method
,”
ASME Appl. Mech. Rev.
,
48
, pp.
S90
S95
.
7.
Narita
,
Y.
, 2000, “
Combinations for the Free Vibration Behaviors of Anisotropic Rectangular Plates Under General Edge Conditions
,”
ASME J. Appl. Mech.
,
67
, pp.
568
573
.
8.
Bassily
,
S. F.
, and
Dickinson
,
S. M.
, 1975, “
On the Use of Beam Functions for Problems of Plates Involving Free Edges
,”
ASME J. Appl. Mech.
42
, pp.
858
864
.
9.
Oosterhout
,
G. M.
,
Van Der Hoogt
,
P. J. M.
, and
Spiering
,
R. M. E. J.
, 1995, “
Accurate Calculation Methods for Natural Frequencies of Plates With Special Attention to the Higher Modes
,”
J. Sound Vib.
,
183
(
1
), pp.
33
47
.
10.
Bhat
,
R. B.
, 1985, “
Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomial in Rayleigh-Ritz Method
,”
J. Sound Vib.
,
102
(
4
), pp.
493
499
.
11.
Dickinson
,
S. M.
, and
Di Blasio
,
A.
,1986, “
On the Use of Orthogonal Polynomials in the Rayleigh-Ritz Method for the Study of the Flexural Vibration and Buckling of Isotropic and Orthotropic Rectangular Plates
,”
J. Sound Vib.
,
108
(
1
), pp.
51
62
.
12.
Bhat
,
R. B.
,
Laura
,
P. A. A.
,
Gutierrez
,
R. G.
,
Cortinez
,
V. H.
, and
Sanzi
,
H. C.
, 1990, “
Numerical Experiments on the Determination of Natural Frequencies of Transverse Vibrations of Rectangular Plates of Non-Uniform Thickness
,”
J. Sound Vib.
,
138
(
2
), pp.
205
219
.
13.
Rossi
,
R. E.
,
Bambill
,
D. V.
, and
Laura
,
P. A. A.
, 1998, “
Vibrations of a Rectangular Orthotropic Plate With a Free Edge: A Comparison of Analytical and Numerical Results
,”
Ocean Eng.
,
25
(
7
), pp.
521
527
.
14.
Baruh
,
H.
, and
Tadikonda
,
S. S. K.
, 1989, “
Another Look at Admissible Functions
,”
J. Sound Vib.
,
132
(
1
), pp.
73
87
.
15.
Bhat
,
R. B.
, 1987, “
Flexural Vibration of Polygonal Plates Using Characteristic Orthogonal Polynomials in Two Variables
,”
J. Sound Vib.
,
114
(
1
), pp.
65
71
.
16.
Liew
,
K. M.
, and
Lam
,
K. Y.
, 1990, “
Application of Two-Dimensional Orthogonal Plate Function to Flexural Vibration of Skew Plates
,”
J. Sound Vib.
,
139
(
2
), pp.
241
252
.
17.
Singh
,
B.
, and
Chakraverty
,
S.
, 1994, “
Flexural Vibration of Skew Plates Using Boundary Characteristic Orthogonal Polynomials in Two Variables
,”
J. Sound Vib.
,
173
, pp.
157
178
.
18.
Bardell
,
N. S.
, 1992, “
The Free Vibration of Skew Plates Using the Hierarchical Finite Element Method
,”
Comput. Struct.
,
45
, pp.
841
847
.
You do not currently have access to this content.