The stochastic behavior of a two-dimensional nonlinear panel subjected to subsonic flow with random pressure fluctuations and an external forcing is studied in this paper. The total aerodynamic pressure is considered as the sum of two parts, one given by the random pressure fluctuations on the panel in the absence of any panel motion, and the other due to the panel motion itself. The random pressure fluctuations are idealized as a zero mean Brownian motion. Galerkin method is used to transform the governing partial differential equation to a series of ordinary differential equations. The closed moment equations are obtained by the Itô differential rule and Gauss truncation. The stability and complex responses of the moment equations are presented in theoretical and numerical analysis. Results show that a bifurcation of fixed points occurs and the bifurcation point is determined as functions of noise spectral density, dynamic pressure, and panel structure parameters; the chaotic response regions and periodic response regions appear alternately in parameter spaces, the periodic responses trajectories change rhythmically, and the route from periodic responses to chaos is via doubling-period bifurcation. The treatment suggested in this paper can also be extended for the other fluid-structure dynamic systems.

References

1.
Schetz
,
J. A.
,
2001
, “
Aerodynamics of High-Speed Trains
,”
Ann. Rev. Fluid. Mech.
,
33
, pp.
371
414
.10.1146/annurev.fluid.33.1.371
2.
Jeromr
,
C. R.
,
1994
, “
A Train for the 21st Century
,”
Rail Int.
,
25
(
4
), pp.
2
8
.
3.
Raghunathan
,
R. S.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
,
2002
, “
Aerodynamics of High-Speed Railway Trains
,”
Prog. Aerosp. Sci.
,
38
, pp.
469
514
.10.1016/S0376-0421(02)00029-5
4.
Guiheu
,
C.
,
1983
, “
Resistance to Forward Movement of TGV-PSE Trainsets: Evaluation of Studies and Results of Measurements
,”
French Railw. Rev.
1
(
1
), pp.
13
26
.
5.
Li
,
P.
,
Yang
,
Y. R.
, and
Zhang
,
M. L.
,
2011
, “
Melnikov's Method for Chaos of a Two-Dimensional Thin Panel in Subsonic Flow With External Excitation
,”
Mech. Res. Commun.
38
, pp.
524
528
.10.1016/j.mechrescom.2011.07.008
6.
Li
,
P.
,
Yang
,
Y. R.
, and
Xu
,
W.
,
2012
, “
Nonlinear Dynamics Analysis of a Two-Dimensional Thin Panel With an External Forcing in Incompressible Subsonic Flow
,”
Nonlinear Dyn.
,
67
, pp.
2483
2503
.10.1007/s11071-011-0162-8
7.
Li
,
P.
,
Yang
,
Y. R.
,
Xu
,
W.
, and
Chen
,
G.
,
2012
, “
On the Aeroelastic Stability and Bifurcation Structure of Subsonic Nonlinear Thin Panels Subjected to External Excitation
,”
Arch. Appl. Mech.
,
82
, pp.
1251
1267
.10.1007/s00419-012-0618-4
8.
Ishii
,
T.
,
1965
, “
Aeroelastic Instabilities of Simply Supported Panels in Subsonic Flow
,” AIAA Paper No. 65-772.
9.
Dugundji
,
J.
,
Dowell
,
E. H.
, and
Perkin
,
B.
,
1963
, “
Subsonic Flutter of Panels on Continuous Elastic Foundations
,”
AIAA J.
,
1
, pp.
1146
1154
.10.2514/3.1738
10.
Kornecki
,
A.
,
1974
, “
Static and Dynamic Instability of Panels and Cylindrical Shells in Subsonic Potential Flow
,”
J. Sound Vib.
,
32
, pp.
251
263
.10.1016/S0022-460X(74)80168-9
11.
Kornecki
,
A.
,
Dowell
,
E. H.
, and
O'Brien
,
J.
,
1974
, “
On the Aeroelastic Instability of Two-Dimensional Panels in Uniform Incompressible Flow
,”
J. Sound Vib.
,
47
, pp.
163
178
.10.1016/0022-460X(76)90715-X
12.
Guo
,
C. Q.
, and
Païdoussis
,
M. P.
,
2000
, “
Stability of Rectangular Plates With Free Side-Edges in Two-Dimensional Inviscid Channel Flow
,”
ASME J. Appl. Mech.
,
67
, pp.
171
176
.10.1115/1.321143
13.
Eastep
,
E. P.
, and
Mcintosh
,
S.C.
, Jr
.,
1971
, “
Analysis of Nonlinear Panel Flutter and Response Under Random Excitation or Nonlinear Aerodynamic Loading
,”
AIAA J.
,
9
(
3
), pp.
411
418
.10.2514/3.6195
14.
Potapov
,
V. D.
,
1995
, “
Stability of Viscoelastic Plate in Supersonic Flow Under Random Loading
,”
AIAA J.
,
33
(
4
), pp.
712
715
.10.2514/3.12635
15.
Vaicaitis
,
R.
,
Jan
,
C. M.
, and
Shinozuka
,
M.
,
1972
, “
Nonlinear Panel Response From a Turbulent Boundary Layer
,”
AIAA J.
,
10
(
7
), pp.
895
899
.10.2514/3.50242
16.
Vaicaitis
,
R.
,
Dowell
,
E. H.
, and
Ventres
,
C. S.
,
1974
, “
Nonlinear Panel Response by a Monte Carlo Approach
,”
AIAA J.
,
12
(
5
), pp.
685
691
.10.2514/3.49320
17.
Ibrahim
,
R. A.
,
Orono
,
P. O.
, and
Madabosi
,
S. R.
,
1990
, “
Stochastic Flutter of a Panel Subjected to Random In-Panel Forces Part I: Two Modes Interaction
,”
AIAA J.
,
28
(
4
), pp.
694
702
.10.2514/3.10448
18.
Ahmadi
,
G.
,
1977
, “
On the Stability of System of Coupled Partial Differential Equations With Random Excitation
,”
J. Sound Vib.
,
52
(
1
), pp.
27
35
.10.1016/0022-460X(77)90386-8
19.
Ariaratnam
,
S. T.
, and
Abdelrahman
,
N. M.
,
2001
, “
Almost-Sure Stochastic Stability Viscoelastic Plates in Supersonic Flow
,”
AIAA J.
,
39
(
3
), pp.
465
472
.10.2514/2.1328
20.
Caughey
,
T. K.
, and
Gray
,
A. H.
, Jr
.,
1967
, “
On the Almost Sure Stability of Linear Dynamic System With Stochastic Coefficients
,”
J. Fluid Mech.
,
28
(
4
), pp.
719
754
.10.1017/S0022112067002411
21.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2009
, “
Stochastic Stability of Duffing Oscillator With Fractional Derivative Damping Under Combined Harmonic and White Noise Parametric Excitations
,”
Acta Mech.
,
207
(
1–2
), pp.
109
120
.10.1007/s00707-008-0110-y
22.
Zhang
,
G. J.
,
Xu
,
J. X.
,
Wang
,
J.
,
Yue
,
J. F.
, and
Zou
,
H. L.
,
2009
, “
Stochastic Resonance Induced by the Novel Random Transitions of Two-Dimensional Weak Damping Bitable Duffing Oscillator and Bifurcation of Moment Equation
,”
Chaos, Solitions Fractals
,
42
, pp.
2272
2279
.10.1016/j.chaos.2009.03.155
23.
Evstigneev
,
M.
,
Pankov
,
V.
, and
Prince
,
R. H.
,
2001
, “
A Application of the Method of Moments for Calculating the Dynamic Response of a Bitable Noisy Oscillator to External Driving
,”
J. Phys. A: Gen.
,
34
, pp.
2595
2605
.10.1088/0305-4470/34/12/307
24.
Dowell
,
E. H.
,
1975
,
Aeroelasticity of Plates and Shells
,
Noordhoff International Publishing
,
Leyden
.
25.
Païdoussis
,
M. P.
,
2000
,
Fluid-Structure Interactions: Slender Structure and Axial Flow
, Vol.
2
,
Elsevier Academic
,
London
.
26.
Mateescu
,
D.
, and
Païdoussis
,
M. P.
,
1987
, “
Unsteady Viscous Effects on the Annular-Flow-Induced Instability of a Rigid Cylindrical Body in a Narrow Duct
,”
J. Fluids Struct.
,
1
, pp.
197
215
.10.1016/S0889-9746(87)90339-2
27.
Dowell
,
E. H.
,
1966
, “
Nonlinear Oscillations of a Fluttering Plate I
,”
AIAA J.
4
(
7
), pp.
1267
1275
.10.2514/3.55295
28.
Dowell
,
E. H.
,
1967
, “
Nonlinear Oscillations of a Fluttering Plate II
,”
AIAA J.
,
5
(
10
), pp.
1856
1862
.10.2514/3.4316
29.
Ziegler
,
F.
, and
Schueller
,
G. I.
, eds.,
1988
, Nonlinear Stochastic Dynamic Engineering Systems: IUTAM Symposium, Innsbruck/lgls, Austria, June 21–26, Springer-Verlag, Berlin/Heidelberg.
30.
Dowell
,
E. H.
,
1982
, “
Flutter of a Buckled Plate as an Example of Chaotic Motion of a Deterministic Autonomous System
,”
J. Sound Vib.
,
85
, pp.
333
344
.10.1016/0022-460X(82)90259-0
31.
Zhao
,
L. C.
, and
Yang
,
Z. C.
,
1990
, “
Chaotic Motions of an Airfoil With Non-Linear Stiffness in Incompressible Flow
,”
J. Sound Vib.
,
138
, pp.
245
254
.10.1016/0022-460X(90)90541-7
You do not currently have access to this content.