In earlier studies on stress distribution in arteries, a monolayer wall model was often used. An arterial wall consists of three layers, the intima, the media, and the adventitia. The intima is mechanically negligible as a stress supporting layer against the blood pressure in young healthy vessels, although it is important as an interface between blood and arterial wall. The media and adventitia layers are considered to support blood pressure. Recently, residual strain and a constitutive law for porcine coronary arteries have been investigated in separated media and adventitia. Using the data obtained through these investigations, a stress analysis considering residual stress (strain) in each layer was performed in this study, and residual strain and stress were computed for a bilayer model. The circumferential residual stress was compressive in the inner region, tensile in the outer region, and had discontinuity at the boundary between the media and adventitia. A peak circumferential stress occurred in the media at the boundary between the media and adventitia under a physiological condition, and an almost flat distribution was obtained in the adventitia. This pattern does not change under a hypertensive condition. These results suggest that a remodeling with hypertension occurs in the media.

References

1.
Fung
,
Y. C.
,
1983
, “
What Principle Governs the Stress Distribution in Living Organs?
Biomechanics in China, Japan, and U.S.A.
,
Y. C.
Fung
,
E.
Fukada
, and
W.
Junjian
, eds.,
Science Press
,
Beijing
, pp.
1
13
.
2.
Fung
,
Y. C.
,
1984
,
Biodynamics: Circulation
,
Springer-Verlag
,
New York
.
3.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1988
, “
Zero-Stress States of Arteries
,”
J. Biomech. Eng.
,
110
, pp.
82
84
.10.1115/1.3108410
4.
Omens
,
J. H.
, and
Fung
,
Y. C.
,
1990
, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
,
66
, pp.
37
45
.10.1161/01.RES.66.1.37
5.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1983
, “
Estimation of Residual Strains in Aortic Segments
,”
Biomedical Engineering II: Recent Developments
,
C. W.
Hall
, ed.,
Pergamon Press
,
New York
, pp.
330
333
.
6.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1987
, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
,
20
, pp.
235
239
.10.1016/0021-9290(87)90290-9
7.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.10.1016/0021-9290(87)90262-4
8.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
J. Biomech. Eng.
,
105
, pp.
268
274
.10.1115/1.3138417
9.
Mirsky
,
I.
,
1973
, “
Ventricular and Arterial Wall Stresses Based on Large Deformation Theories
,”
Biophys. J.
,
13
, pp.
1141
1159
.10.1016/S0006-3495(73)86051-5
10.
Chuong
,
C. J.
, and
Fung
Y. C.
,
1986
, “
On Residual Stress in Arteries
,”
J. Biomech. Eng.
,
108
, pp.
189
192
.10.1115/1.3138600
11.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1988
, “
Uniform Strain Hypothesis and Thin-Walled Theory in Arterial Mechanics
,”
Biorheology
,
25
, pp.
555
565
.
12.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1991
, “
Change of Zero-Stress State of Rat Pulmonary Arteries in Hypoxic Hypertension
,”
J. Appl. Physiol.
,
70
, pp.
2455
2470
.10.1063/1.349398
13.
Guo
,
X.
,
Lu
,
X.
, and
Kassab
,
G. S.
,
2005
, “
Transmural Strain Distribution in the Blood Vessel Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
, pp.
H881
H886
.10.1152/ajpheart.00607.2004
14.
Matsumoto
,
T.
, and
Hayashi
,
K.
,
1996
, “
Stress and Strain Distribution in Hypertensive and Normotensive Rat Aorta Considering Residual Strain
,”
J. Biomech. Eng.
,
118
, pp.
62
73
.10.1115/1.2795947
15.
Rhodin
,
J. A. G.
,
1980
, “
Architecture of the Vessel Wall
,”
Handbook of Physiology
, Sec. 2, Vol.
II
,
D. F.
Bohr
,
A. D.
Somlyo
, and
H. V.
Sparks
, eds.,
American Physiological Society
,
Bethesda, MD
, pp.
1
31
.
16.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
, pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
17.
von Maltzhan
,
W. W.
,
Warriyar
,
R. G.
, and
Keitzer
,
W. F.
,
1984
, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
,
17
, pp.
839
847
.10.1016/0021-9290(84)90142-8
18.
Fung
,
Y. C.
,
Fronec
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol. Heart Circ. Physiol.
,
237
, pp.
H620
H631
.
19.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Laniar
,
Y.
, and
Kassab
,
G. S.
,
2006
, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
, pp.
H1200
H1209
.10.1152/ajpheart.01323.2005
20.
Takamizawa
,
K.
,
2009
, “
Three-Dimensional Stress and Strain Distribution in a Two-Layer Model of a Coronary Artery
,”
J. Biorheology
,
23
, pp.
49
55
.10.1007/s12573-009-0008-x
21.
Klarbring
,
A.
,
Olsson
,
T.
, and
Stålhand
,
J.
,
2007
, “
Theory of Residual Stress With Application to an Arterial Geometry
,”
Arch. Mech.
,
59
, pp.
341
364
.
22.
Takamizawa
,
K.
, and
Matsuda
,
T.
,
1990
, “
Kinematics for Bodies Undergoing Residual Stress and Its Applications to the Left Ventricle
,”
J. Appl. Mech.
,
57
, pp.
321
329
.10.1115/1.2891992
23.
Patel
,
D. J.
, and
Fry
,
D. L.
,
1969
, “
The Elastic Symmetry of Arterial Segments in Dogs
,”
Circ. Res.
,
24
, pp.
1
8
.10.1161/01.RES.24.1.1
24.
Lu
,
X.
,
Pandit
,
A.
, and
Kassab
,
G. S.
,
2004
, “
Biaxial Incremental Homeostatic Elastic Moduli of Coronary Artery: Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
, pp.
H1663
H1669
.10.1152/ajpheart.00030.2004
25.
Wang
,
C.
,
Zhang
,
W.
, and
Kassab
,
G. S.
,
2008
, “
The Validation of a Generalized Hooke’s Law for Coronary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
, pp.
H66
H73
.10.1152/ajpheart.00703.2007
26.
Fung
,
Y. C.
,
1965
,
Foundations of Solid Mechanics
,
Prentice-Hall
,
NJ
.
27.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
, pp.
1
8
.10.1016/j.jbiomech.2008.11.011
28.
Matsumoto
,
T.
, and
Sato
,
M.
,
2002
, “
Analysis of Stress and Strain Distribution in the Artery Wall Consisted of Layers with Different Elastic Modulus and Opening Angle
,”
JSME Int. J. Ser. C
,
45
, pp.
906
912
.10.1299/jsmec.45.906
29.
Patel
,
D. J.
, and
Vaishnav
,
R. N.
,
1980
,
Basic Hemodynamics and Its Role in Disease Processes
,
University Park Press, Baltimore, MD
.
You do not currently have access to this content.