The control of band structures of 2D phononic crystals (PCs) composed of piezoelectric inclusions and elastic isotropic matrix with mechanical/electrical biasing fields is theoretically investigated. The theory for small fields superposed on biasing fields and the plane wave expansion (PWE) method is employed to compute the band structures of the PCs under different biasing fields, including the initial shear/normal stress and the initial electric field. We find that the initial shear stress breaks the symmetry of the material. In consequence, the two bands associated with the level repulsion effect are opened near the apparent crosspoint and form a local band gap. On the other hand, the normal initial stress and the biasing electric field change the effective stiffness and shift the positions of band gaps. The observed phenomena show that the biasing fields can be flexibly used to tune the PC devices.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
2.
Chen
,
J. J.
,
Zhang
,
K. W.
,
Gao
,
J.
, and
Cheng
,
J. C.
,
2006
, “
Stopbands for Lower-Order Lamb Waves in One-Dimensional Composite Thin Plates
,”
Phys. Rev. B
,
73
(
9
), p.
094307
.10.1103/PhysRevB.73.094307
3.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.10.1103/PhysRevLett.106.024301
4.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nature Mater.
,
9
(
12
), pp.
989
992
.10.1038/nmat2881
5.
Pierre
,
J.
,
Boyko
,
O.
,
Belliard
,
L.
,
Vasseur
,
J. O.
, and
Bonello
,
B.
,
2010
, “
Negative Refraction of Zero Order Flexural Lamb Waves Through a Two-Dimensional Phononic Crystal
,”
Appl. Phys. Lett.
,
97
(
12
), p.
121919
.10.1063/1.3491290
6.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4400
4402
.10.1063/1.1757642
7.
Oh
,
J. H.
,
Lee
,
I. K.
,
Ma
,
P. S.
, and
Kim
,
Y. Y.
,
2011
, “
Active Wave-Guiding of Piezoelectric Phononic Crystals
,”
Appl. Phys. Lett.
,
99
(
8
), p.
083505
.10.1063/1.3610476
8.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
9.
Sigalas
,
M. M.
,
1997
, “
Elastic Wave Band Gaps and Defect States in Two-Dimensional Composites
,”
J. Acoust. Soc. Am.
,
101
(
3
), pp.
1256
1261
.10.1121/1.418156
10.
Sigalas
,
M. M.
,
1998
, “
Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders
,”
J. Appl. Phys.
,
84
(
6
), pp.
3026
3030
.10.1063/1.368456
11.
Wang
,
Y. Z.
,
Li
,
F. M.
,
Huang
,
W. H.
,
Jiang
,
X. A.
,
Wang
,
Y. S.
, and
Kishimoto
,
K. K.
,
2008
, “
Wave Band Gaps in Two-Dimensional Piezoelectric/Piezomagnetic Phononic Crystals
,”
Int. J. Solids Struct.
,
45
(
14
), pp.
4203
4210
.10.1016/j.ijsolstr.2008.03.001
12.
Khelif
,
A.
,
Deymier
,
P.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J.
, and
Dobrzynski
,
L.
,
2003
, “
Two-Dimensional Phononic Crystal With Tunable Narrow Pass Band: Application to a Waveguide With Selective Frequency
,”
J. Appl. Phys.
,
94
(
3
), pp.
1308
1311
.10.1063/1.1557776
13.
Wang
,
Y. Z.
,
Li
,
F. M.
,
Kishimoto
,
K.
,
Wang
,
Y. S.
, and
Huang
,
W. H.
,
2009
, “
Elastic Wave Band Gaps in Magnetoelectroelastic Phononic Crystals
,”
Wave Motion
,
46
(
1
), pp.
47
56
.10.1016/j.wavemoti.2008.08.001
14.
Kuang
,
W. M.
,
Hou
,
Z. L.
, and
Liu
,
Y. Y.
,
2004
, “
The Effects of Shapes and Symmetries of Scatterers on the Phononic Band Gap in 2D Phononic Crystals
,”
Phys. Lett. A
,
332
(
5
), pp.
481
490
.10.1016/j.physleta.2004.10.009
15.
Brunet
,
T.
,
Vasseur
,
J.
,
Bonello
,
B.
,
Djafari-Rouhani
,
B.
, and
Hladky-Hennion
,
A. C.
,
2008
, “
Lamb Waves in Phononic Crystal Slabs With Square or Rectangular Symmetries
,”
J. Appl. Phys.
,
104
(
4
), p.
043506
.10.1063/1.2970067
16.
Zhu
,
X. F.
,
Zou
,
X. Y.
,
Liang
,
B.
, and
Cheng
,
J. C.
,
2010
, “
One-Way Mode Transmission in One-Dimensional Phononic Crystal Plates
,”
J. Appl. Phys.
,
108
(
12
), p.
124909
.10.1063/1.3520491
17.
Huang
,
Y.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
,
2014
, “
Symmetry Breaking Induces Band Gaps in Periodic Piezoelectric Plates
,”
J. Appl. Phys.
,
115
(
13
), p.
133501
.10.1063/1.4870137
18.
Huang
,
Y.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Elastic Wave Band Structures and Defect States in a Periodically Corrugated Piezoelectric Plate
,”
ASME J. Appl. Mech.
, 81(8), p. 081005.10.1115/1.4027487
19.
Lin
,
S.-C. S.
, and
Huang
,
T. J.
,
2011
, “
Tunable Phononic Crystals With Anisotropic Inclusions
,”
Phys. Rev. B
,
83
(
17
), p.
174303
.10.1103/PhysRevB.83.174303
20.
Achaoui
,
Y.
,
Khelif
,
A.
,
Benchabane
,
S.
, and
Laude
,
V.
,
2010
, “
Polarization State and Level Repulsion in Two-Dimensional Phononic Crystals and Waveguides in the Presence of Material Anisotropy
,”
J. Phys. D: Appl. Phys.
,
43
(
18
), p.
185401
.10.1088/0022-3727/43/18/185401
21.
Wu
,
T. T.
,
Huang
,
Z. G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
,
69
(
9
), p.
094301
.10.1103/PhysRevB.69.094301
22.
Hsu
,
J. C.
,
2013
, “
Effects of Elastic Anisotropy in Phononic Band-Gap Plates With Two-Dimensional Lattices
,”
J. Phys. D: Appl. Phys.
,
46
(
1
), p.
015301
.10.1088/0022-3727/46/1/015301
23.
Yang
,
J. S.
,
2005
, “
Free Vibrations of an Electroelastic Body Under Biasing Fields
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
3
), pp.
358
364
.10.1109/TUFFC.2005.1417257
24.
Hu
,
Y. T.
,
Yang
,
J. S.
, and
Jiang
,
Q.
,
2002
, “
A Model for Electroelastic Plates Under Biasing Fields With Applications in Buckling Analysis
,”
Int. J. Solids Struct.
,
39
(
9
), pp.
2629
2642
.10.1016/S0020-7683(02)00122-1
25.
Gei
,
M.
,
Roccabianca
,
S.
, and
Bacca
,
M.
,
2011
, “
Controlling Bandgap in Electroactive Polymer-Based Structures
,”
IEEE ASME Trans. Mech.
,
16
(
1
), pp.
102
107
.10.1109/TMECH.2010.2090165
26.
Shmuel
,
G.
, and
deBotton
,
G.
,
2012
, “
Band-Gaps in Electrostatically Controlled Dielectric Laminates Subjected to Incremental Shear Motions
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1970
1981
.10.1016/j.jmps.2012.05.006
27.
Shmuel
,
G.
,
2013
, “
Electrostatically Tunable Band Gaps in Finitely Extensible Dielectric Elastomer Fiber Composites
,”
Int. J. Solids Struct.
,
50
(
5
), pp.
680
686
.10.1016/j.ijsolstr.2012.10.028
28.
Tiersten
,
H. F.
,
1971
, “
On the Nonlinear Equations of Thermo-Electroelasticity
,”
Int. J. Eng. Sci.
,
9
(
7
), pp.
587
604
.10.1016/0020-7225(71)90062-0
29.
Baumhauer
,
J.
, and
Tiersten
,
H. F.
,
1973
, “
Nonlinear Electroelastic Equations for Small Fields Superposed on a Bias
,”
J. Acoust. Soc. Am.
,
54
(
4
), pp.
1017
1034
.10.1121/1.1914312
30.
Tiersten
,
H. F.
,
1995
, “
On the Accurate Description of Piezoelectric Resonators Subject to Biasing Deformations
,”
Int. J. Eng. Sci.
,
33
(
15
), pp.
2239
2259
.10.1016/0020-7225(95)00069-A
31.
Yang
,
J. S.
,
2005
,
An Introduction to the Theory of Piezoelectricity
,
Springer
, New York.
32.
Wu
,
T. T.
, and
Huang
,
Z. G.
,
2004
, “
Level Repulsions of Bulk Acoustic Waves in Composite Materials
,”
Phys. Rev. B
,
70
(
21
), p.
214304
.10.1103/PhysRevB.70.214304
33.
Mace
,
B. R.
, and
Manconi
,
E. E.
,
2012
, “
Wave Motion and Dispersion Phenomena: Veering, Locking and Strong Coupling Effects
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1015
1028
.10.1121/1.3672647
You do not currently have access to this content.