Critical displacements are determined for snap-through of shallow, extensible, and elastic arches that are pushed downward quasi-statically at any point along the span. The initial arch is circular and unstrained, and the ends of the arch are pinned and immovable. When the vertical position at the push-down location reaches a critical value, the arch jumps into an inverted shape (unless the arch is extremely shallow). The critical displacement is given or approximated by an unstable equilibrium configuration of the unloaded arch, for which an analyical formula is derived.

References

1.
Plaut
,
R. H.
,
1979
, “
Influence of Load Position on the Stability of Shallow Arches
,”
J. Appl. Math. Phys. (ZAMP)
,
30
(
3
), pp.
548
552
.10.1007/BF01588902
2.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.10.1115/1.3179003
3.
Chen
,
J.-S.
, and
Hung
,
S.-Y.
,
2011
, “
Snapping of an Elastica Under Various Loading Mechanisms
,”
Eur. J. Mech. A
,
30
(
4
), pp.
525
531
.10.1016/j.euromechsol.2011.03.006
4.
Pandey
,
A.
,
Moulton
,
D. E.
,
Vella
,
D.
, and
Holmes
,
D. P.
,
2014
, “
Dynamics of Snapping Beams and Jumping Poppers
,”
EPL
,
105
(
2
), p.
24001
.10.1209/0295-5075/105/24001
5.
Fargette
,
A.
,
Neukirch
,
S.
, and
Antkowiak
,
A.
,
2014
, “
Elastocapillary Snapping: Capillarity Induces Snap-Through Instabilities in Small Elastic Beams
,”
Phys. Rev. Lett. (PRL)
,
112
(
13
), p.
137802
.10.1103/PhysRevLett.112.137802
6.
Harvey
,
P. S.
, Jr.
, and
Virgin
,
L. N.
,
2015
, “
Coexisting Equilibria and Stability Boundaries of a Shallow Arch: Unilateral Displacement-Control Experiments and Theory
,”
Int. J. Solids Struct.
,
54
(
1
), pp.
1
11
.10.1016/j.ijsolstr.2014.11.016
7.
Plaut
,
R. H.
,
2015
, “
Snap-Through of Arches and Buckled Beams Under Unilateral Displacement Control
,”
Int. J. Solids Struct.
,
63
(
1
), pp.
109
113
.10.1016/j.ijsolstr.2015.02.044
8.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures
,
Oxford University Press
,
New York
.
You do not currently have access to this content.