In this paper, the theoretical analysis and the inversion of the contact stress on the finite thickness rubber contact surface with the friction effect are investigated. First, an explicit expression of deformation and stress on the surface of rubber under a rigid spherical indenter is developed by means of theoretical model, dimensional analysis, and nonlinear finite element simulation. Second, the inverse approach for obtaining the contact stress on the finite thickness rubber contact surface is presented and verified theoretically. Also, the displacement, the stress field, and the friction coefficient are obtained by means of three-dimensional digital image correlation (3D DIC) method. Finally, the applicability to other hyperelastic models, general boundary conditions, and loading modes are discussed. The results will provide an important theoretical and experimental basis for evaluating the contact stress on the finite thickness rubber layer.

References

1.
Flitney
,
R. K.
,
2011
,
Seals and Sealing Handbook
,
Butterworth-Heinemann
, Oxford, UK.
2.
Ke
,
Y.
,
Yao
,
X.
,
Yang
,
H.
, and
Liu
,
X.
,
2014
, “
Kinetic Friction Characterizations of the Tubular Rubber Seals
,”
Tribol. Int.
,
72
, pp.
35
41
.
3.
Liu
,
Q.
,
Wang
,
Z.
,
Lou
,
Y.
, and
Suo
,
Z.
,
2014
, “
Elastic Leak of a Seal
,”
Extreme Mech. Lett.
,
1
, pp.
54
61
.
4.
Ke
,
Y.-C.
,
Yao
,
X.-F.
,
Yang
,
H.
, and
Ma
,
Y.-J.
,
2017
, “
Gas Leakage Prediction of Contact Interface in Fabric Rubber Seal Based on a Rectangle Channel Model
,”
Tribol. Trans.
,
60
(
1
), pp.
146
153
.
5.
K. L. Johnson, 1985,
Contact Mechanics
, Cambridge University Press, Cambridge, UK.
6.
Persson
,
B.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A.
, and
Tosatti
,
E.
,
2005
, “
On the Nature of Surface Roughness With Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.: Condens. Matter
,
17
(
1
), p.
R1
.
7.
Persson
,
B. N. J.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), p.
3840
.
8.
Lin
,
Y.-Y.
,
Chang
,
C.-F.
, and
Lee
,
W.-T.
,
2008
, “
Effects of Thickness on the Largely-Deformed JKR (Johnson–Kendall–Roberts) Test of Soft Elastic Layers
,”
Int. J. Solids. Struct
,
45
(
7–8
), pp.
2220
2232
.
9.
Zisis
,
T.
,
Zafiropoulou
,
V.
, and
Giannakopoulos
,
A.
,
2011
, “
The Adhesive Contact of a Flat Punch on a Hyperelastic Substrate Subject to a Pull-out Force or a Bending Moment
,”
Mech. Mater.
,
43
(
1
), pp.
1
24
.
10.
Vasu
,
T. S.
, and
Bhandakkar
,
T. K.
,
2016
, “
A Study of the Contact of an Elastic Layer–Substrate System Indented by a Long Rigid Cylinder Incorporating Surface Effects
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061009
.
11.
Ihara
,
T.
,
Shaw
,
M.
, and
Bhushan
,
B.
,
1986
, “
A Finite Element Analysis of Contact Stress and Strain in an Elastic Film on a Rigid Substrate—Part I: Zero Friction
,”
ASME J. Tribol.
,
108
(
4
), pp.
527
533
.
12.
Scheibert
,
J.
,
Prevost
,
A.
,
Frelat
,
J.
,
Rey
,
P.
, and
Debrégeas
,
G.
,
2008
, “
Experimental Evidence of Non-Amontons Behaviour at a Multi-Contact Interface
,”
Europhys. Lett.
,
83
(
3
), p.
34003
.
13.
Nguyen
,
D. T.
,
Paolino
,
P.
,
Audry
,
M.
,
Chateauminois
,
A.
,
Fretigny
,
C.
,
Le Chenadec
,
Y.
,
Portigliatti
,
M.
, and
Barthel
,
E.
,
2011
, “
Surface Pressure and Shear Stress Fields Within a Frictional Contact on Rubber
,”
J. Adhes.
,
87
(
3
), pp.
235
250
.
14.
Prevost
,
A.
,
Scheibert
,
J.
, and
Debrégeas
,
G.
,
2013
, “
Probing the Micromechanics of a Multi-Contact Interface at the Onset of Frictional Sliding
,”
Eur. J. Phys. E
,
36
(
17
), pp.
1
12
.
15.
Eguchi
,
M.
,
Shibamiya
,
T.
, and
Yamamoto
,
T.
,
2009
, “
Measurement of Real Contact Area and Analysis of Stick/Slip Region
,”
Tribol. Int.
,
42
(
11–12
), pp.
1781
1791
.
16.
Scheibert
,
J.
,
Prevost
,
A.
,
Debrégeas
,
G.
,
Katzav
,
E.
, and
Adda-Bedia
,
M.
,
2009
, “
Stress Field at a Sliding Frictional Contact: Experiments and Calculations
,”
J. Mech. Phys. Solids
,
57
(
12
), pp.
1921
1933
.
17.
Belforte
,
G.
,
Conte
,
M.
,
Bertetto
,
A. M.
,
Mazza
,
L.
, and
Visconte
,
C.
,
2009
, “
Experimental and Numerical Evaluation of Contact Pressure in Pneumatic Seals
,”
Tribol. Int.
,
42
(
1
), pp.
169
175
.
18.
Treloar
,
L.
,
1943
, “
The Elasticity of a Network of Long-Chain Molecules—II
,”
Trans. Faraday Soc.
,
39
, pp.
241
246
.
19.
Bertrand
,
J.
,
1878
, “
Sur L'homogénéité Dans Les Formules De Physique
,”
C. Rendus
,
86
(
15
), pp.
916
920
.
20.
Giannakopoulos
,
A.
, and
Panagiotopoulos
,
D.
,
2009
, “
Conical Indentation of Incompressible Rubber-like Materials
,”
Int. J. Solids. Struct.
,
46
(
6
), pp.
1436
1447
.
21.
Corp., D. S
,
2012
, “
ABAQUS User's Manual, Version 6.12
,” Dassault Systemes, Providence, RI.
22.
Zhang
,
M.-G.
,
Chen
,
J.
,
Feng
,
X.-Q.
, and
Cao
,
Y.
,
2014
, “
On the Applicability of Sneddon's Solution for Interpreting the Indentation of Nonlinear Elastic Biopolymers
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091011
.
23.
Zisis
,
T.
,
Zafiropoulou
,
V.
, and
Giannakopoulos
,
A.
,
2015
, “
Evaluation of Material Properties of Incompressible Hyperelastic Materials Based on Instrumented Indentation of an Equal-Biaxial Prestretched Substrate
,”
Int. J. Solids. Struct.
,
64–65
, pp.
132
144
.
24.
Zhang
,
M.-G.
,
Cao
,
Y.-P.
,
Li
,
G.-Y.
, and
Feng
,
X.-Q.
,
2014
, “
Spherical Indentation Method for Determining the Constitutive Parameters of Hyperelastic Soft Materials
,”
Biomech. Model. Mech.
,
13
(
1
), pp.
1
11
.
25.
Tiwari
,
V.
,
Sutton
,
M. A.
,
McNeill
,
S. R.
,
Xu
,
S.
,
Deng
,
X.
,
Fourney
,
W. L.
, and
Bretall
,
D.
,
2009
, “
Application of 3D Image Correlation for Full-Field Transient Plate Deformation Measurements During Blast Loading
,”
Int. J. Impact. Eng.
,
36
(
6
), pp.
862
874
.
26.
Luo
,
P.
,
Chao
,
Y.
,
Sutton
,
M.
, and
Peters Iii
,
W.
,
1993
, “
Accurate Measurement of Three-Dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision
,”
Exp. Mech.
,
33
(
2
), pp.
123
132
.
27.
Helm
,
J. D.
,
McNeill
,
S. R.
, and
Sutton
,
M. A.
,
1996
, “
Improved Three‐Dimensional Image Correlation for Surface Displacement Measurement
,”
Opt. Eng.
,
35
(
7
), pp.
1911
1920
.
28.
Guanchang
,
J.
,
Zhen
,
W.
,
Nikeng
,
B.
, and
Xuefeng
,
Y.
,
2003
, “
Digital Speckle Correlation Method With Compensation Technique for Strain Field Measurements
,”
Opt. Laser. Eng.
,
39
(
4
), pp.
457
464
.
29.
Yao
,
X.
,
Meng
,
L.
,
Jin
,
J.
, and
Yeh
,
H.
,
2005
, “
Full-Field Deformation Measurement of Fiber Composite Pressure Vessel Using Digital Speckle Correlation Method
,”
Polym. Test
,
24
(
2
), pp.
245
251
.
30.
Hadamard
,
J.
,
1923
,
Lectures on Cauchy's Problem in Linear Partial Differential Equations
,
Yale University Press
,
New Haven, CT
.
31.
Cao
,
Y. P.
, and
Lu
,
J.
,
2004
, “
A New Method to Extract the Plastic Properties of Metal Materials From an Instrumented Spherical Indentation Loading Curve
,”
Acta Mater.
,
52
(
13
), pp.
4023
4032
.
32.
Meng
,
L.
,
Jin
,
G.
,
Yao
,
X.
, and
Yeh
,
H.
,
2006
, “
3D Full-Field Deformation Monitoring of Fiber Composite Pressure Vessel Using 3D Digital Speckle Correlation Method
,”
Polym. Test
,
25
(
1
), pp.
42
48
.
33.
Yang
,
H.
,
Yao
,
X.-F.
,
Ke
,
Y.-C.
,
Ma
,
Y-J.
, and
Liu
,
Y.-H.
,
2016
, “
Constitutive Behaviors and Mechanical Characterizations of Fabric Reinforced Rubber Composites
,”
Compos. Struct.
,
152
, pp.
117
123
.
34.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer Science & Business Media
, New York.
35.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
36.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. A
,
241
(
835
), pp.
379
397
.
37.
Ogden
,
R.
, 1972, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. A
,
326
(1567), pp.
565
584
.
38.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
You do not currently have access to this content.