As a versatile yet simple technique, transfer printing has been widely explored for the heterogeneous integration of materials/structures, particularly important for the application in stretchable and transient electronics. The key steps of transfer printing involve pickup of the materials/structures from a donor and printing of them onto a receiver substrate. The modulation of the interfacial adhesion is critically important to control the adhesion/delamination at different material–structural interfaces. Here, we present a magnetic-assisted transfer printing technique that exploits a unique structural design, where a liquid chamber filled with incompressible liquid is stacked on top of a compressible gas chamber. The top liquid chamber wall uses a magnetic-responsive thin film that can be actuated by the external magnetic field. Due to the incompressible liquid, the actuation of the magnetic-responsive thin film induces the pressure change in the bottom gas chamber that is in contact with the material/structure to be transfer printed, leading to effective modulation of the interfacial adhesion. The decreased (increased) pressure in the bottom gas chamber facilitates the pickup (printing) step. An analytical model is also established to study the displacement profile of the top thin film of the gas chamber and the pressure change in the gas chamber upon magnetic actuation. The analytical model, validated by finite element analysis, provides a comprehensive design guideline for the magnetic-assisted transfer printing.

References

1.
Xu
,
L.
,
Gutbrod
,
S. R.
,
Bonifas
,
A. P.
,
Su
,
Y.
,
Sulkin
,
M. S.
,
Lu
,
N.
,
Chung
,
H. J.
,
Jang
,
K. I.
,
Liu
,
Z.
,
Ying
,
M.
,
Lu
,
C.
,
Webb
,
R. C.
,
Kim
,
J. S.
,
Laughner
,
J. I.
,
Cheng
,
H.
,
Liu
,
Y.
,
Ameen
,
A.
,
Jeong
,
J. W.
,
Kim
,
G. T.
,
Huang
,
Y.
,
Efimov
,
I. R.
, and
Rogers
,
J. A.
,
2014
, “
3D Multifunctional Integumentary Membranes for Spatiotemporal Cardiac Measurements and Stimulation Across the Entire Epicardium
,”
Nat. Commun.
,
5
(
1
), p.
3329
.
2.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
3.
Lee
,
S.
,
Kang
,
B.
,
Keum
,
H.
,
Ahmed
,
N.
,
Rogers
,
J.
,
Ferreira
,
P.
,
Kim
,
S.
, and
Min
,
B.
,
2016
, “
Heterogeneously Assembled Metamaterials and Metadevices Via 3D Modular Transfer Printing
,”
Sci. Rep.
,
6
(
1
), p.
27621
.
4.
Hwang
,
S. W.
,
Park
,
G.
,
Cheng
,
H.
,
Song
,
J. K.
,
Kang
,
S. K.
,
Yin
,
L.
,
Kim
,
J. H.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Lee
,
K. M.
, and
Rogers
,
J. A.
,
2014
, “
25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices
,”
Adv. Mater.
,
26
(
13
), pp.
1992
2000
.
5.
Hwang
,
S. W.
,
Tao
,
H.
,
Kim
,
D. H.
,
Cheng
,
H.
,
Song
,
J. K.
,
Rill
,
E.
,
Brenckle
,
M. A.
,
Panilaitis
,
B.
,
Won
,
S. M.
,
Kim
,
Y. S.
,
Song
,
Y. M.
,
Yu
,
K. J.
,
Ameen
,
A.
,
Li
,
R.
,
Su
,
Y.
,
Yang
,
M.
,
Kaplan
,
D. L.
,
Zakin
,
M. R.
,
Slepian
,
M. J.
,
Huang
,
Y.
,
Omenetto
,
F. G.
, and
Rogers
,
J. A.
,
2012
, “
A Physically Transient Form of Silicon Electronics
,”
Science
,
337
(
6102
), pp.
1640
1644
.
6.
Hwang
,
S. W.
,
Lee
,
C. H.
,
Cheng
,
H.
,
Jeong
,
J. W.
,
Kang
,
S. K.
,
Kim
,
J. H.
,
Shin
,
J.
,
Yang
,
J.
,
Liu
,
Z.
,
Ameer
,
G. A.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors
,”
Nano Lett.
,
15
(
5
), pp.
2801
2808
.
7.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
.
8.
Gao
,
Y.
, and
Cheng
,
H.
,
2017
, “
Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020801
.
9.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
10.
Windmiller
,
J. R.
,
Bandodkar
,
A. J.
,
Valdés-Ramírez
,
G.
,
Parkhomovsky
,
S.
,
Martinez
,
A. G.
, and
Wang
,
J.
,
2012
, “
Electrochemical Sensing Based on Printable Temporary Transfer Tattoos
,”
Chem. Commun.
,
48
(
54
), pp.
6794
6796
.
11.
Song
,
J.
,
Kam
,
F.-Y.
,
Png
,
R.-Q.
,
Seah
,
W.-L.
,
Zhuo
,
J.-M.
,
Lim
,
G.-K.
,
Ho
,
P. K.
, and
Chua
,
L.-L.
,
2013
, “
A General Method for Transferring Graphene Onto Soft Surfaces
,”
Nat. Nanotechnol.
,
8
(
5
), pp.
356
362
.
12.
Cui
,
X.
,
Lee
,
G.-H.
,
Kim
,
Y. D.
,
Arefe
,
G.
,
Huang
,
P. Y.
,
Lee
,
C.-H.
,
Chenet
,
D. A.
,
Zhang
,
X.
,
Wang
,
L.
, and
Ye
,
F.
,
2015
, “
Multi-Terminal Transport Measurements of MoS2 Using a Van der Waals Heterostructure Device Platform
,”
Nat. Nanotechnol.
,
10
(
6
), pp.
534
540
.
13.
Ko
,
H.
,
Takei
,
K.
,
Kapadia
,
R.
,
Chuang
,
S.
,
Fang
,
H.
,
Leu
,
P. W.
,
Ganapathi
,
K.
,
Plis
,
E.
,
Kim
,
H. S.
, and
Chen
,
S.-Y.
,
2010
, “
Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors
,”
Nature
,
468
(
7321
), pp.
286
289
.
14.
Kim
,
S. J.
,
Cho
,
H. R.
,
Cho
,
K. W.
,
Qiao
,
S.
,
Rhim
,
J. S.
,
Soh
,
M.
,
Kim
,
T.
,
Choi
,
M. K.
,
Choi
,
C.
, and
Park
,
I.
,
2015
, “
Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy
,”
ACS Nano
,
9
(
3
), pp.
2677
2688
.
15.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
16.
Yang
,
S.
,
Qiao
,
S.
, and
Lu
,
N.
,
2016
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
.
17.
Meng
,
X.
,
Liu
,
B.
,
Wang
,
Y.
,
Zhang
,
T.
, and
Xiao
,
J.
,
2016
, “
Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081011
.
18.
Feng
,
X.
,
Meitl
,
M. A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2007
, “
Competing Fracture in Kinetically Controlled Transfer Printing
,”
Langmuir
,
23
(
25
), pp.
12555
12560
.
19.
Sim
,
K.
,
Chen
,
S.
,
Li
,
Y.
,
Kammoun
,
M.
,
Peng
,
Y.
,
Xu
,
M.
,
Gao
,
Y.
,
Song
,
J.
,
Zhang
,
Y.
,
Ardebili
,
H.
, and
Yu
,
C.
,
2015
, “
High Fidelity Tape Transfer Printing Based on Chemically Induced Adhesive Strength Modulation
,”
Sci. Rep.
,
5
(
1
), p.
16133
.
20.
Kim
,
N.
,
Kang
,
H.
,
Lee
,
J.-H.
,
Kee
,
S.
,
Lee
,
S. H.
, and
Lee
,
K.
,
2015
, “
Highly Conductive All-Plastic Electrodes Fabricated Using a Novel Chemically Controlled Transfer-Printing Method
,”
Adv. Mater.
,
27
(
14
), pp.
2317
2323
.
21.
Meitl
,
M. A.
,
Zhu
,
Z. T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2006
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
.
22.
Feng
,
X.
,
Cheng
,
H. Y.
,
Bowen
,
A. M.
,
Carlson
,
A. W.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2013
, “
A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061023
.
23.
Kim
,
R. H.
,
Kim
,
D. H.
,
Xiao
,
J. L.
,
Kim
,
B. H.
,
Park
,
S. I.
,
Panilaitis
,
B.
,
Ghaffari
,
R.
,
Yao
,
J. M.
,
Li
,
M.
,
Liu
,
Z. J.
,
Malyarchuk
,
V.
,
Kim
,
D. G.
,
Le
,
A. P.
,
Nuzzo
,
R. G.
,
Kaplan
,
D. L.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Kang
,
Z.
, and
Rogers
,
J. A.
,
2010
, “
Waterproof AlInGaP Optoelectronics on Stretchable Substrates With Applications in Biomedicine and Robotics
,”
Nat. Mater.
,
9
(
11
), pp.
929
937
.
24.
Wu
,
J.
,
Kim
,
S.
,
Chen
,
W.
,
Carlson
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2011
, “
Mechanics of Reversible Adhesion
,”
Soft Matter
,
7
(
18
), pp.
8657
8662
.
25.
Cheng
,
H. Y.
,
Wu
,
J.
,
Yu
,
Q. M.
,
Kim-Lee
,
H. J.
,
Carlson
,
A.
,
Turner
,
K. T.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing
,”
Mech. Res. Commun.
,
43
, pp.
46
49
.
26.
Carlson
,
A.
,
Kim-Lee
,
H. J.
,
Wu
,
J.
,
Elvikis
,
P.
,
Cheng
,
H. Y.
,
Kovalsky
,
A.
,
Elgan
,
S.
,
Yu
,
Q. M.
,
Ferreira
,
P. M.
,
Huang
,
Y. G.
,
Turner
,
K. T.
, and
Rogers
,
J. A.
,
2011
, “
Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly
,”
Appl. Phys. Lett.
,
98
(
26
), p.
264104
.
27.
Carlson
,
A.
,
Wang
,
S. D.
,
Elvikis
,
P.
,
Ferreira
,
P. M.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Active, Programmable Elastomeric Surfaces With Tunable Adhesion for Deterministic Assembly by Transfer Printing
,”
Adv. Funct. Mater.
,
22
(
21
), pp.
4476
4484
.
28.
Li
,
R.
,
Li
,
Y. H.
,
Lu
,
C. F.
,
Song
,
J. Z.
,
Saeidpouraza
,
R.
,
Fang
,
B.
,
Zhong
,
Y.
,
Ferreira
,
P. M.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2012
, “
Thermo-Mechanical Modeling of Laser-Driven Non-Contact Transfer Printing: Two-Dimensional Analysis
,”
Soft Matter
,
8
(
27
), pp.
7122
7127
.
29.
Gao
,
Y.
,
Li
,
Y.
,
Li
,
R.
, and
Song
,
J.
,
2017
, “
An Accurate Thermomechanical Model for Laser-Driven Microtransfer Printing
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
064501
.
30.
Lee
,
H.
,
Um
,
D. S.
,
Lee
,
Y.
,
Lim
,
S.
,
Kim
,
H. J.
, and
Ko
,
H.
,
2016
, “
Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes
,”
Adv. Mater.
,
28
(
34
), pp.
7457
7465
.
31.
Xue
,
Y. G.
,
Zhang
,
Y. H.
,
Feng
,
X.
,
Kim
,
S.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2015
, “
A Theoretical Model of Reversible Adhesion in Shape Memory Surface Relief Structures and Its Application in Transfer Printing
,”
J. Mech. Phys. Solids
,
77
, pp.
27
42
.
32.
Eisenhaure
,
J. D.
,
Xie
,
T.
,
Varghese
,
S.
, and
Kim
,
S.
,
2013
, “
Microstructured Shape Memory Polymer Surfaces With Reversible Dry Adhesion
,”
ACS Appl. Mater. Interfaces
,
5
(
16
), p.
7714
.
33.
Baik
,
S.
,
Kim
,
D. W.
,
Park
,
Y.
,
Lee
,
T.-J.
,
Bhang
,
S. H.
, and
Pang
,
C.
,
2017
, “
A Wet-Tolerant Adhesive Patch Inspired by Protuberances in Suction Cups of Octopi
,”
Nature
,
546
(
7658
), pp.
396
400
.
34.
Hu
,
B.-S.
,
Wang
,
L.-W.
,
Fu
,
Z.
, and
Zhao
,
Y.-Z.
,
2009
, “
Bio-Inspired Miniature Suction Cups Actuated by Shape Memory Alloy
,”
Int. J. Adv. Rob. Syst.
,
6
(
3
), pp.
151
160
.
35.
Abbott
,
J. J.
,
Ergeneman
,
O.
,
Kummer
,
M. P.
,
Hirt
,
A. M.
, and
Nelson
,
B. J.
,
2007
, “
Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1247
1252
.
36.
Pirmoradi
,
F.
,
Jackson
,
J.
,
Burt
,
H.
, and
Chiao
,
M.
,
2011
, “
A Magnetically Controlled MEMS Device for Drug Delivery: Design, Fabrication, and Testing
,”
Lab Chip
,
11
(
18
), pp.
3072
3080
.
37.
Huang
,
L.-B.
,
Bai
,
G.
,
Wong
,
M.-C.
,
Yang
,
Z.
,
Xu
,
W.
, and
Hao
,
J.
,
2016
, “
Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy Into Electricity and Light Emissions
,”
Adv. Mater.
,
28
(
14
), pp.
2744
2751
.
38.
Schomburg
,
W. K.
,
2011
,
Introduction to Microsystem Design
,
Springer
,
Berlin
.
39.
Khan
,
S.
,
Lorenzelli
,
L.
, and
Dahiya
,
R.
,
2016
, “
Flexible MISFET Devices From Transfer Printed Si Microwires and Spray Coating
,”
IEEE J. Electron Devices Soc.
,
4
(
4
), pp.
189
196
.
40.
Fatemeh
,
P.
,
Luna
,
C.
, and
Mu
,
C.
,
2010
, “
A Magnetic Poly(Dimethylesiloxane) Composite Membrane Incorporated With Uniformly Dispersed, Coated Iron Oxide Nanoparticles
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015032
.
41.
Kevin
,
M.
,
Saad
,
A.
,
Mary
,
F.
, and
Zoubeida
,
O.
,
2014
, “
Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami
,”
Smart Mater. Struct.
,
23
(
9
), p.
094002
.
42.
Jürgen
,
M.
, and
Dominik
,
U.
,
2016
, “
Experimental and Theoretical Analysis of the Actuation Behavior of Magnetoactive Elastomers
,”
Smart Mater. Struct.
,
25
(
10
), p.
104002
.
43.
Robert
,
S.
,
Juan
,
R.
,
Samuel
,
E. L.
, and
Paris
,
R. V.
,
2014
, “
Numerical Simulation and Experimental Validation of the Large Deformation Bending and Folding Behavior of Magneto-Active Elastomer Composites
,”
Smart Mater. Struct.
,
23
(
9
), p.
094004
.
44.
Weisong
,
W.
,
Zhongmei
,
Y.
,
Jackie
,
C. C.
, and
Ji
,
F.
,
2004
, “
Composite Elastic Magnet Films With Hard Magnetic Feature
,”
J. Micromech. Microeng.
,
14
(
10
), p.
1321
.
45.
Zhang
,
E.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Computational Model of Bio-Inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
071002
.
46.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
47.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Jerry Qi
,
H.
, and
Meaud
,
J.
,
2016
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
.
48.
Li
,
H.
,
Ma
,
Y.
,
Wen
,
W.
,
Wu
,
W.
,
Lei
,
H.
, and
Fang
,
D.
,
2017
, “
In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081006
.
49.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson's Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
You do not currently have access to this content.