In a bilayer structure consisting of a stiff film bonded to a soft substrate, the stress in the film is much larger when the rigidity of the film is much higher than that of the substrate so that film cracking is a common phenomenon in bilayer structures such as flexible electronics and biological tissues. In this paper, a theoretical model is developed to analyze the normal stress distribution in the structure to explain the mechanism of the formation of periodic crack patterns. The effects of geometrical and material parameters are systematically discussed. The analytical result agrees well with finite element analysis, and the prediction of spacing between cracks agrees with experiments from the literature.

References

1.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Band Gap Formation and Tunability in Stretchable Serpentine Interconnects
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091007
.
2.
Yang
,
S.
,
Qiao
,
S.
, and
Lu
,
N.
,
2017
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
.
3.
Xie
,
Z.
,
Ji
,
B.
, and
Huo
,
Q.
,
2018
, “
Mechanics Design of Stretchable Near Field Communication Antenna With Serpentine Wires
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
045001
.
4.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
5.
Meng
,
X.
,
Liu
,
B.
,
Wang
,
Y.
,
Zhang
,
T.
, and
Xiao
,
J.
,
2016
, “
Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081011
.
6.
Raayai-Ardakani
,
S.
,
Luis Yague
,
J.
,
Gleason
,
K. K.
, and
Boyce
,
M. C.
,
2016
, “
Mechanics of Graded Wrinkling
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121011
.
7.
Kurguzov
,
V. D.
, and
Demeshkin
,
A. G.
,
2016
, “
Experimental and Theoretical Study of the Buckling of Narrow Thin Plates on an Elastic Foundation Under Compression
,”
J. Appl. Mech. Tech. Phys.
,
57
(
3
), pp.
494
500
.
8.
Cotterell
,
B.
, and
Chen
,
Z.
,
2000
, “
Buckling and Cracking of Thin Films on Compliant Substrates Under Compression
,”
Int. J. Fract.
,
104
(
2
), pp.
169
179
.
9.
Wang
,
A.
,
Avila
,
R.
, and
Ma
,
Y.
,
2017
, “
Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
094501
.
10.
Zhao
,
R.
, and
Zhao
,
X.
,
2017
, “
Multimodal Surface Instabilities in Curved Film-Substrate Structures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081001
.
11.
Wang
,
B.
, and
Wang
,
S.
,
2016
, “
Adhesion-Governed Buckling of Thin-Film Electronics on Soft Tissues
,”
Theor. Appl. Mech. Lett.
,
6
(
1
), pp.
6
10
.
12.
Li
,
Y.
,
Zhang
,
J.
,
Xing
,
Y.
, and
Song
,
J.
,
2017
, “
Thermomechanical Analysis of Epidermal Electronic Devices Integrated With Human Skin
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111004
.
13.
Choi
,
S.
,
Lee
,
H.
,
Ghaffari
,
R.
,
Hyeon
,
T.
, and
Kim
,
D.-H.
,
2016
, “
Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated With Nanomaterials
,”
Adv. Mater.
,
28
(
22
), pp.
4203
4218
.
14.
Wang
,
L.
,
Qiao
,
S.
,
Ameri
,
S. K.
,
Jeong
,
H.
, and
Lu
,
N.
,
2017
, “
A Thin Elastic Membrane Conformed to a Soft and Rough Substrate Subjected to Stretching/Compression
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111003
.
15.
Shi
,
X.
,
Xu
,
R.
,
Li
,
Y.
,
Zhang
,
Y.
,
Ren
,
Z.
,
Gu
,
J.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124502
.
16.
Okuyama
,
T.
,
Kobayashi
,
K.
,
Otsuki
,
M.
, and
Tanaka
,
M.
,
2016
, “
Measurement of Finger Joint Angle Using a Flexible Polymer Sensor
,”
Int. J. Appl. Electromagn. Mech.
,
52
(
3–4
), pp.
951
957
.
17.
Wang
,
J. H.
, and
Chen
,
C. Q.
,
2017
, “
Effects of Thickness on the Responses of Piezoresponse Force Microscopy for Piezoelectric Film/Substrate Systems
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121004
.
18.
Gates
,
B. D.
,
2009
, “
Flexible Electronics
,”
Science
,
323
(
5921
), pp.
1566
1567
.
19.
Feng
,
X.
,
Cheng
,
H.
,
Bowen
,
A. M.
,
Carlson
,
A. W.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2013
, “
A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061023
.
20.
Wang
,
L.
, and
Lu
,
N.
,
2016
, “
Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041007
.
21.
Feng
,
X.
,
Huang
,
Y.
, and
Rosakis
,
A. J.
,
2008
, “
Stresses in a Multilayer Thin Film/Substrate System Subjected to Nonuniform Temperature
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021022
.
22.
Liu
,
Y.
,
Li
,
M.
,
Liu
,
J.
, and
Chen
,
X.
,
2017
, “
Mechanism of Surface Wrinkle Modulation for a Stiff Film on Compliant Substrate
,”
ASME J. Appl. Mech.
,
84
(
5
), p.
051011
.
23.
Zhang
,
M.
,
Liu
,
H.
,
Cao
,
P.
,
Chen
,
B.
,
Hu
,
J.
,
Chen
,
Y.
,
Pan
,
B.
,
Fan
,
J. A.
,
Li
,
R.
,
Zhang
,
L.
, and
Su
,
Y.
,
2017
, “
Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121010
.
24.
Chen
,
P.
,
Chen
,
S.
, and
Yao
,
Y.
,
2016
, “
Nonslipping Contact Between a Mismatch Film and a Finite-Thickness Graded Substrate
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021007
.
25.
Guo
,
G.
, and
Zhu
,
Y.
,
2015
, “
Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031005
.
26.
Huang
,
Y.
,
Yuan
,
J.
,
Zhang
,
Y.
, and
Feng
,
X.
,
2016
, “
Interfacial Delamination of Inorganic Films on Viscoelastic Substrates
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101005
.
27.
Li
,
J.
,
An
,
Y.
,
Huang
,
R.
,
Jiang
,
H.
, and
Xie
,
T.
,
2012
, “
Unique Aspects of a Shape Memory Polymer as the Substrate for Surface Wrinkling
,”
ACS Appl. Mater. Inter.
,
4
(
2
), pp.
598
603
.
28.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
,
2000
, “
Crack Patterns in Thin Films
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1107
1131
.
29.
Yin
,
H. M.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
,
2008
, “
An Explicit Elastic Solution for a Brittle Film With Periodic Cracks
,”
Int. J. Fract.
,
153
(
1
), pp.
39
52
.
30.
Ambrico
,
J. M.
, and
Begley
,
M. R.
,
2002
, “
The Role of Initial Flaw Size, Elastic Compliance and Plasticity in Channel Cracking of Thin Films
,”
Thin Solid Films
,
419
(
1–2
), pp.
144
153
.
31.
Zhao
,
Q.
,
Wang
,
W.
,
Shao
,
J.
,
Li
,
X.
,
Tian
,
H.
,
Liu
,
L.
,
Mei
,
X.
,
Ding
,
Y.
, and
Lu
,
B.
,
2016
, “
Nanoscale Electrodes for Flexible Electronics by Swelling Controlled Cracking
,”
Adv. Mater.
,
28
(
30
), pp.
6337
6344
.
32.
Wan
,
H. Y.
,
Luo
,
X. M.
,
Li
,
X.
,
Liu
,
W.
, and
Zhang
,
G. P.
,
2016
, “
Nanotwin-Enhanced Fatigue Resistance of Ultrathin Ag Films for Flexible Electronics Applications
,”
Mat. Sci. Eng., A
,
676
, pp.
421
426
.
33.
Lohmiller
,
J.
,
Woo
,
N. C.
, and
Spolenak
,
R.
,
2010
, “
Microstructure-Property Relationship in Highly Ductile Au-Cu Thin Films for Flexible Electronics
,”
Mat. Sci. Eng., A.
,
527
(
29–30
), pp.
7731
7740
.
34.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C. Q.
,
2010
, “
The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021011
.
35.
Arruda
,
L.
,
Bonadiman
,
R.
,
Costa
,
J.
, and
Reinikainen
,
T.
,
2009
, “
Cracking Phenomena on Flexible-Rigid Interfaces in PCBs Under Thermo Cycling Loading
,”
Circuit World
,
35
(
2
), pp.
18
22
.
36.
van der Sluis
,
O.
,
Engelen
,
R. A. B.
,
Timmermans
,
P. H. M.
, and
Zhang
,
G. Q.
,
2009
, “
Numerical Analysis of Delamination and Cracking Phenomena in Multi-Layered Flexible Electronics
,”
Microelectron. Reliab.
,
49
(
8
), pp.
853
860
.
37.
Steffensen
,
S.
, and
Jensen
,
H. M.
,
2014
, “
Energy Release Rate for Circular Crack Due to Indentation in a Brittle Film on a Ductile Substrate
,”
Eur. J. Mech. A-Solid
,
43
, pp.
133
141
.
38.
Han
,
Y.
,
Liu
,
Y.
,
Wang
,
W.
,
Leng
,
J.
, and
Jin
,
P.
,
2016
, “
Controlled Wettability Based on Reversible Micro-Cracking on a Shape Memory Polymer Surface
,”
Soft Matter
,
12
(
10
), pp.
2708
2714
.
39.
Vellinga
,
W. P.
,
De Hosson
,
J. T. M.
, and
Bouten
,
P. C. P.
,
2012
, “
Effect of Relative Humidity on Crack Propagation in Barrier Films for Flexible Electronics
,”
J. Appl. Phys.
,
112
(
8
), p.
083520
.
40.
Jia
,
Z.
,
Tucker
,
M. B.
, and
Li
,
T.
,
2011
, “
Failure Mechanics of Organic-Inorganic Multilayer Permeation Barriers in Flexible Electronics
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
365
372
.
41.
Lin
,
C. B.
,
Lin
,
C. C.
,
Lee
,
S.
, and
Chou
,
Y. T.
,
2008
, “
The Effect of Dislocations on Crack Propagation in Wrinkled Gold Film Deposited on Polydimethylsiloxane
,”
J. Appl. Phys.
,
104
(
1
), p.
016106
.
42.
Zhao
,
Q.
,
Topham
,
N.
,
Anderson
,
J. M.
,
Hiltner
,
A.
,
Lodoen
,
G.
, and
Payet
,
C. R.
,
1991
, “
Foreign-Body Giant Cells and Polyurethane Biostability: In Vivo Correlation of Cell Adhesion and Surface Cracking
,”
J. Biomed. Mater. Res.
,
25
(
2
), pp.
177
183
.
43.
Middleton
,
J. D.
,
1969
, “
The Effect of Temperature on Extensibility of Isolated Corneum and Its Relation to Skin Chapping
,”
Brit. J. Dermatol.
,
81
(
10
), pp.
717
721
.
44.
Gaul
,
L. E.
, and
Underwood
,
G. B.
,
1952
, “
Relation of Dew Point and Barometric Pressure to Chapping of Normal Skin
,”
J. Invest. Dermatol.
,
19
(
1
), pp.
9
19
.
45.
Sokoloff
,
D. D.
,
Remizowa
,
M. V.
,
Macfarlane
,
T. D.
,
Conran
,
J. G.
,
Yadav
,
S. R.
, and
Rudall
,
P. J.
,
2013
, “
Comparative Fruit Structure in Hydatellaceae (Nymphaeales) Reveals Specialized Pericarp Dehiscence in Some Early-Divergent Angiosperms With Ascidiate Carpels
,”
Taxon
,
62
(
1
), pp.
40
61
.https://www.researchgate.net/publication/272823259_Comparative_fruit_structure_in_Hydatellaceae_Nymphaeales_reveals_specialized_pericarp_dehiscence_in_some_early-divergent_angiosperms_with_ascidiate_carpels
46.
Lu
,
J. J.
,
Tan
,
D. Y.
,
Baskin
,
C. C.
, and
Baskin
,
J. M.
,
2017
, “
Delayed Dehiscence of the Pericarp: Role in Germination and Retention of Viability of Seeds of Two Cold Desert Annual Brassicaceae Species
,”
Plant Biol.
,
19
(
1
), pp.
14
22
.
47.
Aviles
,
F.
,
Llanes
,
L.
, and
Oliva
,
A. I.
,
2009
, “
Elasto-Plastic Properties of Gold Thin Films Deposited Onto Polymeric Substrates
,”
J. Mater. Sci.
,
44
(
10
), pp.
2590
2598
.
48.
McGuigan
,
A. P.
,
Briggs
,
G. A. D.
,
Burlakov
,
V.
,
Yanaka
,
M.
, and
Tsukahara
,
Y.
,
2003
, “
An Elastic-Plastic Shear Lag Model for Fracture of Layered Coatings
,”
Thin Solid Films
,
424
(
2
), pp.
219
223
.
49.
Gao
,
X. L.
, and
Li
,
K.
,
2005
, “
A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1649
1667
.
50.
Okabe
,
T.
,
Takeda
,
N.
,
Kamoshida
,
Y.
,
Shimizu
,
M.
, and
Curtin
,
W. A.
,
2001
, “
A 3D Shear-Lag Model Considering Micro-Damage and Statistical Strength Prediction of Unidirectional Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
61
(
12
), pp.
1773
1787
.
51.
Bhalla
,
S.
, and
Moharana
,
S.
,
2013
, “
A Refined Shear Lag Model for Adhesively Bonded Piezo-Impedance Transducers
,”
J. Intel. Mat. Syst. Struct.
,
24
(
1
), pp.
33
48
.
52.
Tobushi
,
H.
,
Okumura
,
K.
,
Hayashi
,
S.
, and
Ito
,
N.
,
2001
, “
Thermomechanical Constitutive Model of Shape Memory Polymer
,”
Mech. Mater.
,
33
(
10
), pp.
545
554
.
You do not currently have access to this content.