Abstract

The response control of nonlinear random dynamical systems is an important but also difficult subject in scientific and industrial fields. This work merges the decomposition technique of feedback control and the data-driven identification method of stationary response probability density, converts the constrained functional extreme value problem associated with optimal control to an unconstrained optimization problem of multivariable function, and determines the optimal coefficients of preselected control terms by an optimization algorithm. This data-driven method avoids the difficulty of solving the stochastic dynamic programming equation or forward–backward stochastic differential equations encountered in classical control theories, the miss of the conservative mechanism in the nonlinear stochastic optimal control strategy, and the difficulty of judging the integrability and resonance of the controlled Hamiltonian systems encountered in the direct-control method. The application and efficacy of the data-driven method are illustrated by the random response control problems of the Duffing oscillator, van der Pol system, and a two degrees-of-freedom nonlinear system.

References

1.
Cai
,
G. Q.
, and
Zhu
,
W. Q.
,
2017
,
Elements of Stochastic Dynamics
,
Word Scientific
,
Hackensack
.
2.
Wijker
,
J.
,
2009
,
Random Vibrations in Spacecraft Structures Design
,
Springer
,
Dordrecht
.
3.
Cui
,
M. Y.
,
Xie
,
X. J.
, and
Wu
,
Z. J.
,
2013
, “
Dynamics Modeling and Tracking Control of Robot Manipulators in Random Vibration Environment
,”
IEEE Trans. Autom. Control
,
58
(
6
), pp.
1540
1545
. 10.1109/TAC.2012.2228052
4.
Li
,
R. S.
,
2001
, “
A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load
,”
ASME J. Electron. Packag.
,
123
(
4
), pp.
394
400
. 10.1115/1.1372318
5.
Gharaibeh
,
M. A.
, and
Pitarresi
,
J. M.
,
2019
, “
Random Vibration Fatigue Life Analysis of Electronic Packages by Analytical Solutions and Taguchi Method
,”
Microelectron. Reliab.
,
102
, p.
113475
. 10.1016/j.microrel.2019.113475
6.
Wagg
,
D.
, and
Neild
,
S.
,
2015
,
Nonlinear Vibration With Control for Flexible and Adaptive Structures
,
Springer
,
Cham
.
7.
Sun
,
J. Q.
,
2006
,
Stochastic Dynamics and Control
,
Elsevier
,
Amsterdam
.
8.
Udwadia
,
F. E.
,
2014
, “
A New Approach to Stable Optimal Control of Complex Nonlinear Dynamical Systems
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031001
. 10.1115/1.4024874
9.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2014
, “
Control of Uncertain Nonlinear Multibody Mechanical Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041020
. 10.1115/1.4025399
10.
Carlo
,
C.
,
2014
, “
An Introduction to Optimal Control
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024801
. 10.1115/1.4026482
11.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Kovaleva
,
A.
,
1999
,
Optimal Control of Mechanical Oscillations
,
Springer-Verlag
,
Berlin
.
13.
Yong
,
J. M.
, and
Zhou
,
X. Y.
,
1999
,
Stochastic Controls, Hamiltonian Systems, and HJB Equations
,
Springer-Verlag
,
New York
.
14.
Liberzon
,
D.
,
2010
,
Calculus of Variations and Optimal Control Theory
,
Princeton University Press
,
Princeton
.
15.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
. 10.1115/1.2193137
16.
Zhu
,
W. Q.
,
Ying
,
Z. G.
, and
Soong
,
T. T.
,
2001
, “
An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,”
Nonlinear Dyn.
,
24
(
1
), pp.
31
51
. 10.1023/A:1026527404183
17.
Yang
,
Y.
,
Wang
,
Y.
,
Jin
,
X. L.
, and
Huang
,
Z. L.
,
2019
, “
Stochastic Averaging-Based Direct Method for Response Control of Nonlinear Vibrating System
,”
ASCE J. Eng. Mech.
,
145
(
4
), p.
04019015
. 10.1061/(ASCE)EM.1943-7889.0001585
18.
Yang
,
Y.
,
Wang
,
Y.
,
Huang
,
Z. L.
, and
Ji
,
X. Y.
,
2020
, “
Direct Control Method for Improving Stability and Reliability of Nonlinear Stochastic Dynamical Systems
,”
Probabilistic Eng. Mech.
,
61
, p.
103078
. 10.1016/j.probengmech.2020.103078
19.
Yang
,
Y.
,
Wang
,
Y.
, and
Huang
,
Z. L.
,
2020
, “
Probabilistic Tracking Control of Dissipated Hamiltonian Systems Excited by Gaussian White Noises
,”
Int. J. Syst. Sci.
10.1080/00207721.2020.1871106
20.
Stratonovich
,
R. L.
,
1963
,
Topics in the Theory of Random Noise
,
Gordon and Breach Science Publishers
,
New York
.
21.
Tabor
,
M.
,
1989
,
Chaos and Integrability in Nonlinear Dynamics
,
John Wiley and Sons
,
New York
.
22.
Arnold
,
V. I.
,
Kozlov
,
V. V.
, and
Neishtadt
,
A. I.
,
1993
,
Mathematical Aspects of Classical and Celestial Mechanics
,
Springer
,
Berlin
.
23.
Tian
,
Y. P.
,
Wang
,
Y.
,
Jiang
,
H. Q.
,
Huang
,
Z. L.
,
Elishakoff
,
I.
, and
Cai
,
G. Q.
,
2020
, “
Stationary Response Probability Density of Nonlinear Random Vibrating Systems: A Data-Driven Method
,”
Nonlinear Dyn.
,
100
(
3
), pp.
2337
2352
. 10.1007/s11071-020-05632-4
24.
Sobczyk
,
K.
, and
Trcebicki
,
J.
,
1999
, “
Approximate Probability Distributions for Stochastic Systems: Maximum Entropy Method
,”
Comput. Methods Appl. Mech. Eng.
,
168
(
1–4
), pp.
91
111
. 10.1016/S0045-7825(98)00135-2
25.
Sedov
,
L. I.
,
1993
,
Similarity and Dimensional Methods in Mechanics
,
CRC Press
,
Boca Raton, FL
.
26.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
. 10.1073/pnas.1517384113
27.
Kougioumtzoglou
,
I. A.
,
Petromichelakis
,
I.
, and
Psaros
,
A. F.
,
2020
, “
Sparse Representations and Compressive Sampling Approaches in Engineering Mechanics: A Review of Theoretical Concepts and Diverse Applications
,”
Probabilistic Eng. Mech.
,
61
, p.
103082
. 10.1016/j.probengmech.2020.103082
28.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
29.
Spanos
,
P. D.
,
Di Matteo
,
A.
,
Cheng
,
Y.
,
Pirrotta
,
A.
, and
Li
,
J.
,
2016
, “
Galerkin Scheme-Based Determination of Survival Probability of Oscillators With Fractional Derivative Elements
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121003
. 10.1115/1.4034460
30.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators via a Numerical Path Integral Approach
,”
J. Eng. Mech.
,
139
(
9
), pp.
1207
1217
. 10.1061/(ASCE)EM.1943-7889.0000564
31.
Di Matteo
,
A.
,
2019
, “
Path Integral Approach via Laplace’s Method of Integration for Nonstationary Response of Nonlinear Systems
,”
Meccanica
,
54
(
9
), pp.
1351
1363
. 10.1007/s11012-019-00991-8
32.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), p.
04014064
. 10.1061/(ASCE)EM.1943-7889.0000780
33.
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Spanos
,
P. D.
,
Pirrotta
,
A.
, and
Di Paola
,
M.
,
2015
, “
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101005
.
34.
Meimaris
,
A. T.
,
Kougioumtzoglou
,
I. A.
,
Pantelous
,
A. A.
, and
Pirrotta
,
A.
,
2019
, “
An Approximate Technique for Determining in Closed Form the Response Transition Probability Density Function of Diverse Nonlinear/Hysteretic Oscillators
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2627
2641
. 10.1007/s11071-019-05152-w
35.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
Stochastic Response Determination of Nonlinear Structural Systems With Singular Diffusion Matrices: A Wiener Path Integral Variational Formulation With Constraints
,”
Probabilistic Eng. Mech.
,
60
, p.
103044
. 10.1016/j.probengmech.2020.103044
36.
Hou
,
Z. S.
,
Gao
,
H. J.
, and
Lewis
,
F. L.
,
2017
, “
Data-Driven Control and Learning Systems
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
4070
4075
. 10.1109/TIE.2017.2653767
37.
Maupong
,
T. M.
, and
Rapisarda
,
P.
,
2017
, “
Data-Driven Control: A Behavioral Approach
,”
Syst. Control Lett.
,
101
, pp.
37
43
. 10.1016/j.sysconle.2016.04.006
38.
Tang
,
W. T.
, and
Daoutidis
,
P.
,
2018
, “
Distributed Adaptive Dynamic Programming for Data-Driven Optimal Control
,”
Syst. Control Lett.
,
120
, pp.
36
43
. 10.1016/j.sysconle.2018.08.002
39.
Hou
,
Z. S.
, and
Wang
,
Z.
,
2013
, “
From Model-Based Control to Data-Driven Control: Survey, Classification and Perspective
,”
Inf. Sci.
,
235
, pp.
3
35
. 10.1016/j.ins.2012.07.014
You do not currently have access to this content.