Abstract

The effect of friction is widespread around us, and most important projects must consider the friction effect. To better depict the dynamic characteristics of multibody systems with friction, a series of friction models have been proposed by scholars. Due to the complex and changeable working conditions, the contact surface is uncertain, and characterizing the friction properties is a challenging problem. Therefore, in this work, a mechanistic-based data-driven (MBDD) approach is proposed to establish a general friction model. According to the generalization ability of deep neural networks, the proposed strategy can handle the friction in multibody systems with different contact surfaces. Moreover, the proposed mechanistic-based data-driven approach can utilize both numerical data and experimental data, so it can achieve small data for the dynamic behavior prediction of complex mechanical systems. Eventually, the numerical simulation is compared with the experimental test. The results show that the proposed strategy can predict the dynamic behavior of a complex multibody system well and can reflect many important friction phenomena, such as the Stribeck effect, stiction, and viscous friction.

References

1.
Amontons
,
G.
,
1699
,
De la Resistance Cause’e Dans les Machines
,
Mémoires de l’Academie Royale des Sciences
, pp.
206
226
.
2.
Coulomb
,
C. A.
,
1785
, “Théorie des Machines Simples, en Ayant égard au Frottement de Leurs Parties,”
et à la Roideur des Cordages
,
Mémoire de Mathématique et de Physique
,
Paris
.
3.
Marques
,
F.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
4.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2015
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.
5.
Rabinowicz
,
E.
,
1951
, “
The Nature of the Static and Kinetic Coefficients of Friction
,”
J. Appl. Phys.
,
22
(
11
), pp.
1373
1379
.
6.
Ścieszka
,
S. F.
, and
Jankowski
,
A.
,
1996
, “
The Importance of Static Friction Characteristics of Brake Friction Couple, and Methods of Testing
,”
Tribotest
,
3
(
2
), pp.
137
148
.
7.
Chatelet
,
E.
,
Michon
,
G.
,
Manin
,
L.
, and
Jacquet
,
G.
,
2008
, “
Stick/Slip Phenomena in Dynamics: Choice of Contact Model. Numerical Predictions & Experiments
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1211
1224
.
8.
Gao
,
Y. F.
,
Xu
,
H. T.
,
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2008
, “
A Comparison of Coulomb Friction and Friction Stress Models Based on Multidimensional Nanocontact Experiments
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
034504
.
9.
Hsieh
,
C.
, and
Pan
,
Y. C.
,
2000
, “
Dynamic Behavior and Modelling of the Pre-Sliding Static Friction
,”
Wear
,
242
(
1–2
), pp.
1
17
.
10.
Bowden
,
F. P.
, and
Leben
,
L.
,
1938
, “
Nature of Sliding and the Analysis of Friction
,”
Nature
,
141
(
1938
), pp.
691
692
.
11.
Yao
,
H. M.
,
2013
, “
A Generalized Model for Adhesive Contact Between a Rigid Cylinder and a Transversely Isotropic Substrate
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011027
.
12.
Wu
,
A. Z.
,
Shi
,
X.
, and
Polycarpou
,
A. A.
,
2012
, “
An Elastoc-Plastic Spherical Contact Model Under Combined Normal and Tangential Loading
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051001
.
13.
Andersson
,
S.
,
Söderberg
,
A.
, and
Björklund
,
S.
,
2007
, “
Friction Models for Sliding Dry, Boundary and Mixed Lubricated Contacts
,”
Tribol. Int.
,
40
(
4
), pp.
580
587
.
14.
Kan
,
Z. Y.
,
Li
,
F.
,
Peng
,
H. J.
, and
Chen
,
B. S.
,
2021
, “
Sliding Cable Modeling: A Nonlinear Complementarity Function Based Framework
,”
Mech. Syst. Signal Process.
,
146
, p.
107021
.
15.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.
16.
Dahl
,
P. R.
,
1976
, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
,
14
(
12
), pp.
1675
1682
.
17.
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Multibody Dynamics Simulation of Planar Linkages With Dahl Friction
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
321
347
.
18.
Al-Bender
,
F.
,
Lampaert
,
V.
, and
Swevers
,
J.
,
2004
, “
A Novel Generic Model at Asperity Level for Dry Friction Force Dynamics
,”
Tribol. Lett.
,
16
(
1–2
), pp.
81
93
.
19.
De Moerlooze
,
K.
,
Al-Bender
,
F.
, and
Van Brussel
,
H.
,
2010
, “
A Generalised Asperity-Based Friction Model
,”
Tribol. Lett.
,
40
(
1
), pp.
113
130
.
20.
Harnoy
,
A.
, and
Friedland
,
B.
,
2008
, “
Dynamic Friction Model of Lubricated Surfaces for Precise Motion Control
,”
Tribol. Trans.
,
37
(
3
), pp.
608
614
.
21.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
22.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Projogo
,
T.
,
2000
, “
An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
675
686
.
23.
Ruderman
,
M.
, and
Bertram
,
T.
,
2013
, “
Two-State Dynamic Friction Model With Elasto-plasticity
,”
Mech. Syst. Signal Process.
,
39
(
12
), pp.
316
332
.
24.
Miguel
,
L. P.
,
Teloli
,
R.
, and
da Silva
,
S.
,
2020
, “
Some Practical Regards on the Application of the Harmonic Balance Method for Hysteresis Models
,”
Mech. Syst. Signal Process.
,
143
, p.
106842
.
25.
Li
,
Z.
,
Wang
,
P.
,
Liu
,
H.
,
Hu
,
Y.
, and
Chen
,
H.
,
2021
, “
Coordinated Longitudinal and Lateral Vehicle Stability Control Based on the Combined-Slip Tire Model in the MPC Framework
,”
Mech. Syst. Signal Process.
,
161
, p.
107947
.
26.
Gehb
,
C. M.
,
Platz
,
R.
, and
Melz
,
T.
,
2019
, “
Two Control Strategies for Semi-Active Load Path Redistribution in a Load-Bearing Structure
,”
Mech. Syst. Signal Processs.
,
118
, pp.
195
208
.
27.
Guo
,
X.
,
Dy
,
Z. L.
,
Liu
,
C.
, and
Tang
,
S.
,
2021
, “
A New Uncertainty Analysis-Based Framework for Data-Driven Computational Mechanics
,”
ASME J. Appl. Mech.
,
88
(
11
), p.
111003
.
28.
Xu
,
R.
,
Yang
,
J.
,
Yan
,
W.
,
Huang
,
Q.
,
Giunta
,
G.
,
Belouettar
,
S.
,
Zahrouni
,
H.
,
Zineb
,
T. B.
, and
Hu
,
H.
,
2020
, “
Data-Driven Multiscale Finite Element Method: From Concurrence to Separation
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112893
.
29.
Tian
,
Y. P.
,
Jin
,
X. L.
,
Wu
,
L. L.
,
Yang
,
Y.
,
Wang
,
Y.
, and
Huang
,
Z. L.
,
2021
, “
Data-Driven Method for Response Control of Nonlinear Random Dynamical Systems
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041012
.
30.
Xu
,
Q. F.
,
Nie
,
Z. G.
,
Xu
,
H. D.
,
Zhou
,
H.
,
Attar
,
H. R.
,
Li
,
N.
,
Xie
,
F.
, and
Liu
,
X. J.
,
2022
, “
Supermeshing: A New Deep Learning Architecture for Increasing the Mesh Density of Physical Fields in Metal Forming Numerical Simulation
,”
ASME J. Appl. Mech.
,
89
(
1
), p.
011002
.
31.
Carrara
,
P.
,
De Lorenzis
,
L.
,
Stainier
,
L.
, and
Ortiz
,
M.
,
2020
, “
Data-Driven Fracture Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113390
.
32.
Yang
,
H.
,
Qiu
,
H.
,
Xiang
,
Q.
,
Tang
,
S.
, and
Guo
,
X.
,
2020
, “
Exploring Elastoplastic Constitutive Law of Microstructure Materials Through Artificial Neural Network—A Mechanistic-Based Data-Driven Approach
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091005
.
33.
Ma
,
Z.
, and
Pan
,
W.
,
2021
, “
Data-Driven Nonintrusive Reduced Order Modeling for Dynamical Systems With Moving Boundaries Using Gaussian Process Regression
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113495
.
34.
Muller
,
A.
,
Karathanasopoulos
,
N.
,
Roth
,
C.
, and
Mohr
,
D.
,
2021
, “
Machine Learning Classifiers for Surface Crank Detection in Fracture Experiments
,”
Int. J. Mech. Sci.
,
209
, p.
106698
.
35.
Zheng
,
L.
,
Kumar
,
S.
, and
Kochmann
,
D. M.
,
2021
, “
Data-Driven Topology Optimization of Spinodoid Metamaterials With Seamlessly Tunable Anisotropy
,”
Comput. Methods Appl. Mech. Eng.
,
383
, p.
113894
.
36.
Pan
,
Y. J.
,
Dai
,
W.
,
Huang
,
L.
,
Li
,
Z.
, and
Mikkola
,
A.
,
2021
, “
Iterative Refinement Algorithm for Efficient Velocities and Accelerations Solutions in Closed-Loop Multibody Dynamics
,”
Mech. Syst. Signal Process.
,
152
, p.
107463
.
37.
Han
,
S.
,
Choi
,
H. S.
,
Choi
,
J.
,
Choi
,
J. H.
, and
Kim
,
J. G.
,
2021
, “
A DNN-Based Data-Driven Modeling Employing Coarse Sample Data for Real-Time Flexible Multibody Dynamics Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113480
.
38.
Tang
,
S.
,
Zhang
,
G.
,
Yang
,
H.
,
Li
,
Y.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2019
, “
MAP123: A Data-Driven Approach to Use 1D Data for 3D Nonlinear Elastic Materials Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112587
.
39.
Tang
,
S.
,
Li
,
Y.
,
Qiu
,
H.
,
Yang
,
H.
,
Saha
,
S.
,
Mojumder
,
S.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2020
, “
MAP123-EP: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112955
.
40.
Tang
,
S.
,
Yang
,
H.
,
Qiu
,
H.
,
Fleming
,
M.
,
Liu
,
W. K.
, and
Guo
,
X.
,
2021
, “
MAP123-EPF: A Mechanistic-Based Data-Driven Approach for Numerical Elastoplastic Modeling at Finite Strain
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113484
.
41.
Ma
,
J.
,
Dong
,
S.
,
Chen
,
G.
,
Peng
,
P.
, and
Qian
,
L.
,
2021
, “
A Data-Driven Normal Contact Force Model Based on Artificial Neural Network for Complex Contacting Surfaces
,”
Mech. Syst. Signal Process.
,
156
, p.
107612
.
42.
Ma
,
J.
,
Chen
,
G.
,
Ji
,
L.
,
Qian
,
L.
, and
Dong
,
S.
,
2020
, “
A General Methodology to Establish the Contact Force Model for Complex Contacting Surfaces
,”
Mech. Syst. Signal Process.
,
140
, p.
106678
.
43.
Wan
,
M.
,
Dai
,
J.
,
Zhang
,
W.
,
Xiao
,
Q.
, and
Qin
,
X.
,
2022
, “
Adaptive Feed-Forward Friction Compensation Through Developing an Asymmetrical Dynamic Friction Model
,”
Mech. Mach. Theory
,
170
, p.
104691
. doi.org/10.1016/j.mechmachtheory.2021.104691
44.
Dong
,
A.
,
Du
,
Z.
, and
Yan
,
Z.
,
2021
, “
Friction Modeling and Compensation For Haptic Master Manipulator Based on Deep Gaussian Process
,”
Mech. Mach. Theory
,
166
, p.
104480
.
45.
Anitescu
,
C.
,
Atroshchenko
,
E.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2019
, “
Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems
,”
Comput. Mater. Contin.
,
59
(
1
), pp.
345
359
.
46.
Min Seo
,
Y.
,
Pandey
,
S.
,
Uk Lee
,
H.
,
Choi
,
C.
,
Gap Park
,
Y.
, and
Ha
,
Y. M.
,
2021
, “
Prediction of Heat Transfer Distribution Induced by the Variation in Vertical Location of Circular Cylinder on Rayleigh-Bénard Convection Using Artificial Neural Network
,”
Int. J. Mech. Sci.
,
209
, p.
106701
.
47.
Liu
,
Q.
,
Liang
,
J.
, and
Ma
,
O.
,
2020
, “
A Physics-Based and Data-Driven Hybrid Modeling Method for Accurately Simulating Complex Contact Phenomenon
,”
Multibody Syst. Dyn.
,
50
(
1
), pp.
97
117
.
48.
Choi
,
H. S.
,
An
,
J.
,
Han
,
S.
,
Kim
,
J. G.
,
Jung
,
J. Y.
,
Choi
,
J.
,
Orzechowski
,
G.
,
Mikkola
,
A.
, and
Choi
,
J. H.
,
2020
, “
Data-Driven Simulation for General-Purpose Multibody Dynamics Using Deep Neural Networks
,”
Multibody Syst. Dyn.
,
51
(
4
), pp.
419
454
.
49.
Kumar
,
R.
,
Ali
,
S. F.
,
Jeyaraman
,
S.
, and
Gupta
,
S.
,
2021
, “
Uncertainty Quantification of Blade Disc Systems Using Data Driven Stochastic Reduced Order Models
,”
Int. J. Mech. Sci.
,
190
, p.
106011
.
50.
Sun
,
Z.
,
Wang
,
C.
,
Zheng
,
Y.
,
Bai
,
J.
,
Li
,
Z.
,
Xia
,
Q.
, and
Fu
,
Q.
,
2020
, “
Non-Intrusive Reduced-Order Model for Predicting Transonic Flow With Varying Geometries
,”
Chin. J. Aeronaut.
,
33
(
2
), pp.
508
519
.
51.
Hess
,
D. P.
, and
Soom
,
A.
,
1990
, “
Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities
,”
ASME J. Tribol.
,
112
(
1
), pp.
147
152
.
52.
Bo
,
L. C.
, and
Pavelescu
,
D.
,
1982
, “
The Friction-Speed Relation and Its Influence on the Critical Velocity of Stick-Slip Motion
,”
Wear
,
82
(
3
), pp.
277
289
.
53.
Shang
,
K.
,
Yao
,
Y.
,
Liang
,
S.
,
Zhang
,
Y.
,
Fisher
,
J. B.
,
Chen
,
J.
,
Liu
,
S.
, et al
,
2021
, “
DNN-MET: A Deep Neural Networks Method to Integrate Satellite-Derived Evapotranspiration Products, Eddy Covariance Observations and Ancillary Information
,”
Agric. For. Meteorol.
,
308
, p.
108582
.
54.
Song
,
N. N.
,
Peng
,
H. J.
,
Kan
,
Z. Y.
, and
Chen
,
B. S.
,
2020
, “
A Novel Nonsmooth Approach for Flexible Multibody Systems With Contact and Friction in 3D Space
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1375
1408
.
55.
Song
,
N. N.
,
Peng
,
H. J.
, and
Kan
,
Z. Y.
,
2022
, “
A Hybrid Data-Driven Model Order Reduction Strategy for Flexible Multibody Systems Considering Impact and Friction
,”
Mech. Mach. Theory
,
169
, p.
104649
.
You do not currently have access to this content.